
$\operatorname{ag} x \rightarrow \operatorname{arctg} \frac{1}{x}$

$D g=\mathbb{R} \backslash\{0\}$

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty \frac{1}{x} \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \quad \lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)
$$

$\lim _{y \rightarrow \infty} \operatorname{arctg} y=\frac{\pi}{2} \quad \lim _{y \rightarrow-\infty} \operatorname{arctg} y=-\frac{\pi}{2}$

b) $x \rightarrow \operatorname{arctg} \frac{1}{x^{2}} \quad D\{=\mathbb{R} \backslash\{0\}$
ok
$\lim \operatorname{arctg} \frac{1}{x^{2}}$
obontrant LIMITA EXISTUSE, Funkee $g x \rightarrow \operatorname{arc} \operatorname{tg} \frac{1}{x^{2}}$ LZEROzSicit honnotou $\frac{\pi}{2}$ OK
$\lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty$
A NEN: RONNA $\pm \infty$
$\lim \operatorname{arctg} y=\frac{\pi}{2}$

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=\frac{\pi}{2} \pm \pm \infty
$$

$y=+\infty$
C) $x \rightarrow\left(\operatorname{arctg} \frac{1}{x}\right)^{2} \quad D f=\mathbb{R} \backslash\{0\}$

$\lim _{x \rightarrow 0} \operatorname{arctg} \frac{1}{x}=-\frac{\pi}{2}$
Lim $\operatorname{arctg} \frac{1}{x}=\frac{\pi}{2}$
$x \rightarrow 0^{-}$
$\lim _{y \rightarrow-\infty} y^{2}=\frac{\pi^{2}}{4}$
$y \rightarrow-\frac{\pi}{2}$
D) $x \rightarrow \operatorname{arccotg} \frac{1}{x} \quad D g=\overline{R \backslash\{0\}}$
$\lim \frac{1}{x}=-\infty$
$x \rightarrow 0^{-}$
$\lim \operatorname{arccotg} y=\pi$
$y^{-3}-\infty$
$\lim \frac{1}{x}=+\infty$
$x \rightarrow 0^{+x}$
oboustraniá umita neexistuse, funkel veze spontte rozsírit
ok
$\lim \operatorname{arccotg}=0$
$y \rightarrow+\infty$
e) $x \rightarrow \operatorname{arccotg} \frac{1}{x^{2}} \quad D \rho=\mathbb{R} \backslash\{0\}$
$\lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty \quad \lim _{y \rightarrow+\infty} \operatorname{arccotg} y=0$
OBOUSTRANNA LIMITA EXISTUSE, LIMITU LZE SPOATE ROAZSİITT HODNJTOU O
A NEN, ROVNA $=\infty$
8) $x \rightarrow\left(\operatorname{arccotg} \frac{1}{x}\right)^{2}$
$D g=\mathbb{R} \backslash\{0\}$
VHCHÁziTIE z VHPDCTO z PREKLADU d
$\lim y^{2}=0$
$y \rightarrow 0$
$\lim _{x \rightarrow \pi} y^{2}=\pi^{2}$
$y \rightarrow \pi$

