


Lecture 1
Complex Numbers I

We begin this lecture with the definition of complex numbers and then
introduce basic operations-addition, subtraction, multiplication, and divi-
sion of complex numbers. Next, we shall show how the complex numbers
can be represented on the xy-plane. Finally, we shall define the modulus
and conjugate of a complex number.

Throughout these lectures, the following well-known notations will be
used:

IN = {1, 2, · · ·}, the set of all natural numbers;

Z = {· · · ,−2,−1, 0, 1, 2, · · ·}, the set of all integers;

Q = {m/n : m, n ∈ Z, n ̸= 0}, the set of all rational numbers;

IR = the set of all real numbers.

A complex number is an expression of the form a + ib, where a and
b ∈ IR, and i (sometimes j) is just a symbol.

C = {a+ ib : a, b ∈ IR}, the set of all complex numbers.

It is clear that IN ⊂ Z ⊂ Q ⊂ IR ⊂ C.

For a complex number, z = a + ib, Re(z) = a is the real part of z, and
Im(z) = b is the imaginary part of z. If a = 0, then z is said to be a purely
imaginary number. Two complex numbers, z and w are equal; i.e., z = w,
if and only if, Re(z) = Re(w) and Im(z) = Im(w). Clearly, z = 0 is the
only number that is real as well as purely imaginary.

The following operations are defined on the complex number system:

(i). Addition: (a + bi) + (c+ di) = (a+ c) + (b+ d)i.

(ii). Subtraction: (a+ bi)− (c+ di) = (a− c) + (b− d)i.

(iii). Multiplication: (a+ bi)(c+ di) = (ac− bd) + (bc+ ad)i.

As in real number system, 0 = 0 + 0i is a complex number such that
z + 0 = z. There is obviously a unique complex number 0 that possesses
this property.

From (iii), it is clear that i2 = −1, and hence, formally, i =
√
−1. Thus,

except for zero, positive real numbers have real square roots, and negative
real numbers have purely imaginary square roots.
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2 Lecture 1

For complex numbers z1, z2, z3 we have the following easily verifiable
properties:

(I). Commutativity of addition: z1 + z2 = z2 + z1.

(II). Commutativity of multiplication: z1z2 = z2z1.

(III). Associativity of addition: z1 + (z2 + z3) = (z1 + z2) + z3.

(IV). Associativity of multiplication: z1(z2z3) = (z1z2)z3.

(V). Distributive law: (z1 + z2)z3 = z1z3 + z2z3.

As an illustration, we shall show only (I). Let z1 = a1+b1i, z2 = a2+b2i
then

z1 + z2 = (a1 + a2) + (b1 + b2)i = (a2 + a1) + (b2 + b1)i

= (a2 + b2i) + (a1 + b1i) = z2 + z1.

Clearly, C with addition and multiplication forms a field.

We also note that, for any integer k,

i4k = 1, i4k+1 = i, i4k+2 = − 1, i4k+3 = − i.

The rule for division is derived as

a+ bi

c+ di
=

a+ bi

c+ di
· c− di

c− di
=

ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i, c2 + d2 ̸= 0.

Example 1.1. Find the quotient
(6 + 2i)− (1 + 3i)

−1 + i− 2
.

(6 + 2i)− (1 + 3i)

−1 + i− 2
=

5− i

−3 + i
=

(5− i)

(−3 + i)

(−3− i)

(−3− i)

=
−15− 1− 5i+ 3i

9 + 1
= − 8

5
− 1

5
i.

Geometrically, we can represent complex numbers as points in the xy-
plane by associating to each complex number a+ bi the point (a, b) in the
xy-plane (also known as an Argand diagram). The plane is referred to
as the complex plane. The x-axis is called the real axis, and the y-axis is
called the imaginary axis. The number z = 0 corresponds to the origin of
the plane. This establishes a one-to-one correspondence between the set of
all complex numbers and the set of all points in the complex plane.



Complex Numbers I 3

Figure 1.1
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We can justify the above representation of complex numbers as follows:
Let A be a point on the real axis such that OA = a. Since i ·i a = i2 a = −a,
we can conclude that twice multiplication of the real number a by i amounts
to the rotation of OA through two right angles to the position OA′′. Thus,
it naturally follows that the multiplication by i is equivalent to the rotation
of OA through one right angle to the position OA′. Hence, if y′Oy is a
line perpendicular to the real axis x′Ox, then all imaginary numbers are
represented by points on y′Oy.

Figure 1.2
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The absolute value or modulus of the number z = a + ib is denoted
by |z| and given by |z| =

√
a2 + b2. Since a ≤ |a| =

√
a2 ≤

√
a2 + b2

and b ≤ |b| =
√
b2 ≤

√
a2 + b2, it follows that Re(z) ≤ |Re(z)| ≤ |z| and

Im(z) ≤ |Im(z)| ≤ |z|. Now, let z1 = a1 + b1i and z2 = a2 + b2i then

|z1 − z2| =
√

(a1 − a2)2 + (b1 − b2)2.

Hence, |z1− z2| is just the distance between the points z1 and z2. This fact
is useful in describing certain curves in the plane.
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Figure 1.3
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Example 1.2. The equation |z−1+3i| = 2 represents the circle whose
center is z0 = 1− 3i and radius is R = 2.

Figure 1.4
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Example 1.3. The equation |z+2| = |z− 1| represents the perpendic-
ular bisector of the line segment joining −2 and 1; i.e., the line x = −1/2.

Figure 1.5
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The complex conjugate of the number z = a + bi is denoted by z and
given by z = a− bi. Geometrically, z is the reflection of the point z about
the real axis.

Figure 1.6
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The following relations are immediate:

1. |z1z2| = |z1||z2|,
∣∣∣∣
z1
z2

∣∣∣∣ =
|z1|
|z2|

, (z2 ̸= 0).

2. |z| ≥ 0, and |z| = 0, if and only if z = 0.

3. z = z, if and only if z ∈ IR.

4. z = −z, if and only if z = bi for some b ∈ IR.

5. z1 ± z2 = z1 ± z2.

6. z1z2 = (z1)(z2).

7.

(
z1
z2

)
=

z1
z2

, z2 ̸= 0.

8. Re(z) =
z + z

2
, Im(z) =

z − z

2i
.

9. z = z.

10. |z| = |z|, zz = |z|2.

As an illustration, we shall show only relation 6. Let z1 = a1+b1i, z2 =
a2 + b2i. Then

z1z2 = (a1 + b1i)(a2 + b2i)

= (a1a2 − b1b2) + i(a1b2 + b1a2)

= (a1a2 − b1b2)− i(a1b2 + b1a2)

= (a1 − b1i)(a2 − b2i) = (z1)(z2).



Lecture 2
Complex Numbers II

In this lecture, we shall first show that complex numbers can be viewed
as two-dimensional vectors, which leads to the triangle inequality. Next,
we shall express complex numbers in polar form, which helps in reducing
the computation in tedious expressions.

For each point (number) z in the complex plane, we can associate a
vector, namely the directed line segment from the origin to the point z; i.e.,
z = a+ bi←→ −→v = (a, b). Thus, complex numbers can also be interpreted
as two-dimensional ordered pairs. The length of the vector associated with
z is |z|. If z1 = a1+ b1i ←→ −→v 1 = (a1, b1) and z2 = a2+ b2i ←→ −→v 2 =
(a2, b2), then z1 + z2 ←→ −→v 1 +−→v 2.

Figure 2.1
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Using this correspondence and the fact that the length of any side of
a triangle is less than or equal to the sum of the lengths of the two other
sides, we have

|z1 + z2| ≤ |z1|+ |z2| (2.1)

for any two complex numbers z1 and z2. This inequality also follows from

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)

= z1z1 + z1z2 + z2z1 + z2z2

= |z1|2 + (z1z2 + z1z2) + |z2|2

= |z1|2 + 2Re(z1z2) + |z2|2

≤ |z1|2 + 2|z1z2| + |z2|2 = (|z1|+ |z2|)2.

Applying the inequality (2.1) to the complex numbers z2 − z1 and z1,

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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we get
|z2| = |z2 − z1 + z1| ≤ |z2 − z1|+ |z1|,

and hence
|z2|− |z1| ≤ |z2 − z1|. (2.2)

Similarly, we have
|z1|− |z2| ≤ |z1 − z2|. (2.3)

Combining inequalities (2.2) and (2.3), we obtain

||z1|− |z2|| ≤ |z1 − z2|. (2.4)

Each of the inequalities (2.1)-(2.4) will be called a triangle inequality. In-
equality (2.4) tells us that the length of one side of a triangle is greater
than or equal to the difference of the lengths of the two other sides. From
(2.1) and an easy induction, we get the generalized triangle inequality

|z1 + z2 + · · ·+ zn| ≤ |z1| + |z2|+ · · ·+ |zn|. (2.5)

From the demonstration above, it is clear that, in (2.1), equality holds
if and only if Re(z1z2) = |z1z2|; i.e., z1z2 is real and nonnegative. If z2 ̸= 0,
then since z1z2 = z1|z2|2/z2, this condition is equivalent to z1/z2 ≥ 0. Now
we shall show that equality holds in (2.5) if and only if the ratio of any two
nonzero terms is positive. For this, if equality holds in (2.5), then, since

|z1 + z2 + z3 + · · ·+ zn| = |(z1 + z2) + z3 + · · · + zn|
≤ |z1 + z2|+ |z3| + · · ·+ |zn|
≤ |z1|+ |z2|+ |z3|+ · · ·+ |zn|,

we must have |z1 + z2| = |z1| + |z2|. But, this holds only when z1/z2 ≥ 0,
provided z2 ̸= 0. Since the numbering of the terms is arbitrary, the ratio
of any two nonzero terms must be positive. Conversely, suppose that the
ratio of any two nonzero terms is positive. Then, if z1 ̸= 0, we have

|z1 + z2 + · · ·+ zn| = |z1|
∣∣∣∣1 +

z2
z1

+ · · ·+ zn
z1

∣∣∣∣

= |z1|
(
1 +

z2
z1

+ · · ·+ zn
z1

)

= |z1|
(
1 +

|z2|
|z1|

+ · · ·+ |zn|
|z1|

)

= |z1| + |z2|+ · · ·+ |zn|.

Example 2.1. If |z| = 1, then, from (2.5), it follows that

|z2 + 2z + 6 + 8i| ≤ |z|2 + 2|z|+ |6 + 8i| = 1 + 2 +
√
36 + 64 = 13.
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Similarly, from (2.1) and (2.4), we find

2 ≤ |z2 − 3| ≤ 4.

Note that the product of two complex numbers z1 and z2 is a new
complex number that can be represented by a vector in the same plane as
the vectors for z1 and z2. However, this product is neither the scalar (dot)
nor the vector (cross) product used in ordinary vector analysis.

Now let z = x+ yi, r = |z| =
√

x2 + y2, and θ be a number satisfying

cos θ =
x

r
and sin θ =

y

r
.

Then, z can be expressed in polar (trigonometric) form as

z = r(cos θ + i sin θ).

Figure 2.2
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To find θ, we usually compute tan−1(y/x) and adjust the quadrant prob-
lem by adding or subtracting π when appropriate. Recall that tan−1(y/x) ∈
(−π/2,π/2).

Figure 2.3

x

y

0

π/6

−π/6

√
3 + i

−
√
3− i

√
3− i

−
√
3 + i

tan−1(y/x) + π

tan−1(y/x)− π

Example 2.2. Express 1−i in polar form. Here r =
√
2 and θ = −π/4,

and hence
1− i =

√
2
[
cos
(
−π
4

)
+ i sin

(
−π
4

)]
.
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Figure 2.4
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We observe that any one of the values θ = −(π/4)± 2nπ, n = 0, 1, · · · ,
can be used here. The number θ is called an argument of z, and we write
θ = arg z. Geometrically, arg z denotes the angle measured in radians that
the vector corresponds to z makes with the positive real axis. The argument
of 0 is not defined. The pair (r, arg z) is called the polar coordinates of the
complex number z.

The principal value of arg z, denoted by Arg z, is defined as that unique
value of arg z such that −π < arg z ≤ π.

If we let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), then

z1z2 = r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)]

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Thus, |z1z2| = |z1||z2|, arg(z1z2) = arg z1 + arg z2.

Figure 2.5
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For the division, we have
z1
z2

=
r1
r2

[cos(θ1 − θ2) + i sin(θ1 − θ2)],
∣∣∣∣
z1
z2

∣∣∣∣ =
|z1|
|z2|

, arg

(
z1
z2

)
= arg z1 − arg z2.
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Example 2.3. Write the quotient
1 + i√
3− i

in polar form. Since the

polar forms of 1 + i and
√
3− i are

1+i =
√
2
(
cos

π

4
+ i sin

π

4

)
and

√
3−i = 2

(
cos
(
−π
6

)
+ i sin

(
−π
6

))
,

it follows that

1 + i√
3− i

=

√
2

2

{
cos
[π
4
−
(
−π
6

)]
+ i sin

[π
4
−
(
−π
6

)]}

=

√
2

2

{
cos

(
5π

12

)
+ i sin

(
5π

12

)}
.

Recall that, geometrically, the point z is the reflection in the real axis
of the point z. Hence, arg z = −arg z.



Lecture 3
Complex Numbers III

In this lecture, we shall first show that every complex number can be
written in exponential form, and then use this form to raise a rational
power to a given complex number. We shall also extract roots of a complex
number. Finally, we shall prove that complex numbers cannot be ordered.

If z = x+ iy, then ez is defined to be the complex number

ez = ex(cos y + i sin y). (3.1)

This number ez satisfies the usual algebraic properties of the exponential
function. For example,

ez1ez2 = ez1+z2 and
ez1

ez2
= ez1−z2 .

In fact, if z1 = x1 + iy1 and z2 = x2 + iy2, then, in view of Lecture 2, we
have

ez1ez2 = ex1(cos y1 + i sin y1)ex2(cos y2 + i sin y2)

= ex1+x2(cos(y1 + y2) + i sin(y1 + y2))

= e(x1+x2)+i(y1+y2) = ez1+z2 .

In particular, for z = iy, the definition above gives one of the most impor-
tant formulas of Euler

eiy = cos y + i sin y, (3.2)

which immediately leads to the following identities:

cos y = Re(eiy) =
eiy + e−iy

2
, sin y = Im(eiy) =

eiy − e−iy

2i
.

When y = π, formula (3.2) reduces to the amazing equality eπi = −1.
In this relation, the transcendental number e comes from calculus, the tran-
scendental number π comes from geometry, and i comes from algebra, and
the combination eπi gives −1, the basic unit for generating the arithmetic
system for counting numbers.

Using Euler’s formula, we can express a complex number z = r(cos θ +
i sin θ) in exponential form; i.e.,

z = r(cos θ + i sin θ) = reiθ. (3.3)

R.P. Agarwal et al., An Introduction to Complex Analysis, 
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The rules for multiplying and dividing complex numbers in exponential
form are given by

z1z2 = (r1e
iθ1)(r2e

iθ2) = (r1r2)e
i(θ1+θ2),

z1
z2

=
r1eiθ1

r2eiθ2
=

(
r1
r2

)
ei(θ1−θ2).

Finally, the complex conjugate of the complex number z = reiθ is given by
z = re−iθ .

Example 3.1. Compute (1).
1 + i√
3− i

and (2). (1 + i)24.

(1). We have 1 + i =
√
2eiπ/4,

√
3− i = 2e−iπ/6, and therefore

1 + i√
3− i

=

√
2eiπ/4

2e−iπ/6
=

√
2

2
ei5π/12.

(2). (1 + i)24 = (
√
2eiπ/4)24 = 212ei6π = 212.

From the exponential representation of complex numbers, De Moivre’s
formula

(cos θ + i sin θ)n = cosnθ + i sinnθ, n = 1, 2, · · · , (3.4)

follows immediately. In fact, we have

(cos θ + i sin θ)n = (eiθ)n = eiθ · eiθ · · · eiθ

= eiθ+iθ+···+iθ

= einθ = cosnθ + i sinnθ.

From (3.4), it is immediate to deduce that

(
1 + i tan θ

1− i tan θ

)n

=
1 + i tannθ

1− i tannθ
.

Similarly, since

1 + sin θ ± i cos θ = 2 cos

(
π

4
− θ

2

)[
cos

(
π

4
− θ

2

)
± i sin

(
π

4
− θ

2

)]
,

it follows that
[
1 + sin θ + i cos θ

1 + sin θ − i cos θ

]n
= cos

(nπ
2
− nθ

)
+ i sin

(nπ
2
− nθ

)
.
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Example 3.2. Express cos 3θ in terms of cos θ. We have

cos 3θ = Re(cos 3θ + i sin 3θ) = Re(cos θ + i sin θ)3

= Re[cos3 θ + 3 cos2 θ(i sin θ) + 3 cos θ(− sin2 θ)− i sin3 θ]

= cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ.

Now, let z = reiθ = r(cos θ + i sin θ). By using the multiplicative prop-
erty of the exponential function, we get

zn = rneinθ (3.5)

for any positive integer n. If n = −1,−2, · · · , we define zn by zn = (z−1)−n.
If z = reiθ , then z−1 = e−iθ/r. Hence,

zn = (z−1)−n =

[
1

r
ei(−θ)

]−n

=

(
1

r

)−n

ei(−n)(−θ) = rneinθ.

Hence, formula (3.5) is also valid for negative integers n.

Now we shall see if (3.5) holds for n = 1/m. If we let

ξ = m
√
reiθ/m, (3.6)

then ξ certainly satisfies ξm = z. But it is well-known that the equation
ξm = z has more than one solution. To obtain all the mth roots of z, we
must apply formula (3.5) to every polar representation of z. For example,
let us find all the mth roots of unity. Since

1 = e2kπi, k = 0,±1,±2, · · · ,

applying formula (3.5) to every polar representation of 1, we see that the
complex numbers

z = e(2kπi)/m, k = 0,±1,±2, · · · ,

are mth roots of unity. All these roots lie on the unit circle centered at the
origin and are equally spaced around the circle every 2π/m radians.

Figure 3.1
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Hence, all of the distinct m roots of unity are obtained by writing

z = e(2kπi)/m, k = 0, 1, · · · ,m− 1. (3.7)

In the general case, the m distinct roots of a complex number z = reiθ

are given by

z1/m = m
√
rei(θ+2kπ)/m, k = 0, 1, · · · ,m− 1.

Example 3.3. Find all the cube roots of
√
2 + i

√
2. In polar form, we

have
√
2 + i

√
2 = 2eiπ/4. Hence,

(
√
2 + i

√
2)1/3 = 3

√
2ei(

π
12+

2kπ
3 ), k = 0, 1, 2;

i.e.,

3
√
2
(
cos

π

12
+ i sin

π

12

)
,

3
√
2

(
cos

3π

4
+ i sin

3π

4

)
,

3
√
2

(
cos

17π

12
+ i sin

17π

12

)
,

are the cube roots of
√
2 + i

√
2.

Example 3.4. Solve the equation (z+1)5 = z5.We rewrite the equation

as

(
z + 1

z

)5

= 1. Hence,

z + 1

z
= e2kπi/5, k = 0, 1, 2, 3, 4,

or

z =
1

e2kπi/5 − 1
= − 1

2

(
1 + i cot

πk

5

)
, k = 0, 1, 2, 3, 4.

Similarly, for any natural number n, the roots of the equation (z+1)n+
zn = 0 are

z = − 1

2

(
1 + i cot

π + 2kπ

n

)
, k = 0, 1, · · · , n− 1.

We conclude this lecture by proving that complex numbers cannot be
ordered. (Recall that the definition of the order relation denoted by > in
the real number system is based on the existence of a subset P (the positive
reals) having the following properties: (i) For any number α ̸= 0, either α
or −α (but not both) belongs to P . (ii) If α and β belong to P , so does
α+β. (iii) If α and β belong to P , so does α ·β. When such a set P exists,
we write α > β if and only if α− β belongs to P .) Indeed, suppose there is
a nonempty subset P of the complex numbers satisfying (i), (ii), and (iii).
Assume that i ∈ P. Then, by (iii), i2 = −1 ∈ P and (−1)i = −i ∈ P . This
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violates (i). Similarly, (i) is violated by assuming −i ∈ P . Therefore, the
words positive and negative are never applied to complex numbers.

Problems

3.1. Express each of the following complex numbers in the form x+ iy :

(a). (
√
2− i)− i(1−

√
2i), (b). (2− 3i)(−2 + i), (c). (1− i)(2− i)(3− i),

(d).
4 + 3i

3− 4i
, (e).

1 + i

i
+

i

1− i
, (f).

1 + 2i

3− 4i
+

2− i

5i
,

(g). (1 +
√
3 i)−10, (h). (−1 + i)7, (i). (1 − i)4.

3.2. Describe the following loci or regions:

(a). |z − z0| = |z − z0|, where Im z0 ̸= 0,

(b). |z − z0| = |z + z0|, where Re z0 ̸= 0,

(c). |z − z0| = |z − z1|, where z0 ̸= z1,

(d). |z − 1| = 1,

(e). |z − 2| = 2|z − 2i|,

(f).

∣∣∣∣
z − z0
z − z1

∣∣∣∣ = c, where z0 ̸= z1 and c ̸= 1,

(g). 0 < Im z < 2π,

(h).
Re z

|z − 1| > 1, Im z < 3,

(i). |z − z1|+ |z − z2| = 2a,

(j). azz + kz + kz + d = 0, k ∈ C, a, d ∈ IR, and |k|2 > ad.

3.3. Let α, β ∈ C. Prove that

|α + β|2 + |α− β|2 = 2(|α|2 + |β|2),

and deduce that

|α+
√
α2 − β2|+ |α−

√
α2 − β2| = |α+ β| + |α− β|.

3.4. Use the properties of conjugates to show that

(a). (z)4 = (z4), (b).

(
z1
z2z3

)
=

z1
z2z3

.

3.5. If |z| = 1, then show that
∣∣∣∣
az + b

bz + a

∣∣∣∣ = 1
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for all complex numbers a and b.

3.6. If |z| = 2, use the triangle inequality to show that

|Im(1− z + z2)| ≤ 7 and |z4 − 4z2 + 3| ≥ 3.

3.7. Prove that if |z| = 3, then

5

13
≤
∣∣∣∣
2z − 1

4 + z2

∣∣∣∣ ≤
7

5
.

3.8. Let z and w be such that zw ̸= 1, |z| ≤ 1, and |w| ≤ 1. Prove that
∣∣∣∣
z − w

1− zw

∣∣∣∣ ≤ 1.

Determine when equality holds.

3.9. (a). Prove that z is either real or purely imaginary if and only if
(z)2 = z2.

(b). Prove that
√
2|z| ≥ |Re z|+ |Im z|.

3.10. Show that there are complex numbers z satisfying |z−a|+|z+a| =
2|b| if and only if |a| ≤ |b|. If this condition holds, find the largest and
smallest values of |z|.

3.11. Let z1, z2, · · · , zn and w1, w2, · · · , wn be complex numbers. Estab-
lish Lagrange’s identity

∣∣∣∣∣

n∑

k=1

zkwk

∣∣∣∣∣

2

=

(
n∑

k=1

|zk|2
)(

n∑

k=1

|wk|2
)

−
∑

k<ℓ

|zkwℓ − zℓwk|2,

and deduce Cauchy’s inequality

∣∣∣∣∣

n∑

k=1

zkwk

∣∣∣∣∣

2

≤
(

n∑

k=1

|zk|2
)(

n∑

k=1

|wk|2
)

.

3.12. Express the following in the form r(cos θ+ i sin θ), −π < θ ≤ π :

(a).
(1− i)(

√
3 + i)

(1 + i)(
√
3− i)

, (b). −8 + 4

i
+

25

3− 4i
.

3.13. Find the principal argument (Arg) for each of the following com-
plex numbers:

(a). 5
(
cos

π

8
− i sin

π

8

)
, (b). −3 +

√
3i, (c). − 2

1 +
√
3i
, (d). (

√
3− i)6.
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3.14. Given z1z2 ̸= 0, prove that

Re z1z2 = |z1||z2| if and only if Arg z1 = Arg z2.

Hence, show that

|z1 + z2| = |z1|+ |z2| if and only if Arg z1 = Arg z2.

3.15. What is wrong in the following?

1 =
√
1 =

√
(−1)(−1) =

√
−1
√
−1 = i i = − 1.

3.16. Show that

(1− i)49
(
cos π

40 + i sin π
40

)10

(8i− 8
√
3)6

= −
√
2.

3.17. Let z = reiθ and w = Reiφ, where 0 < r < R. Show that

Re

(
w + z

w − z

)
=

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
.

3.18. Solve the following equations:

(a). z2 = 2i, (b). z2 = 1−
√
3i, (c). z4 = −16, (d). z4 = −8− 8

√
3i.

3.19. For the root of unity z = e2πi/m, m > 1, show that

1 + z + z2 + · · · + zm−1 = 0.

3.20. Let a and b be two real constants and n be a positive integer.
Prove that all roots of the equation

(
1 + iz

1− iz

)n

= a+ ib

are real if and only if a2 + b2 = 1.

3.21. A quarternion is an ordered pair of complex numbers; e.g., ((1, 2),
(3, 4)) and (2+i, 1−i). The sum of quarternions (A,B) and (C,D) is defined
as (A + C,B + D). Thus, ((1, 2), (3, 4)) + ((5, 6), (7, 8)) = ((6, 8), (10, 12))
and (1 − i, 4 + i) + (7 + 2i,−5 + i) = (8 + i,−1 + 2i). Similarly, the scalar
multiplication by a complex number A of a quaternion (B,C) is defined by
the quadternion (AB,AC). Show that the addition and scalar multiplica-
tion of quaternions satisfy all the properties of addition and multiplication
of real numbers.

3.22. Observe that:
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(a). If x = 0 and y > 0 (y < 0), then Arg z = π/2 (−π/2).
(b). If x > 0, then Arg z = tan−1(y/x) ∈ (−π/2,π/2).
(c). If x < 0 and y > 0 (y < 0), then Arg z = tan−1(y/x)+π (tan−1(y/x)−
π).

(d). Arg (z1z2) = Arg z1 + Arg z2 + 2mπ for some integer m. This m is
uniquely chosen so that the LHS ∈ (−π,π]. In particular, let z1 = −1, z2 =
−1, so that Arg z1 = Arg z2 = π and Arg (z1z2) = Arg(1) = 0. Thus the
relation holds with m = −1.
(e). Arg(z1/z2) = Arg z1 − Arg z2 + 2mπ for some integer m. This m is
uniquely chosen so that the LHS ∈ (−π,π].

Answers or Hints

3.1. (a). −2i, (b). −1 + 8i, (c). −10i, (d). i, (e). (1 − i)/2, (f). −2/5,
(g). 2−11(−1 +

√
3i), (h). −8(1 + i), (i). −4.

3.2. (a). Real axis, (b). imaginary axis, (c). perpendicular bisector (pass-
ing through the origin) of the line segment joining the points z0 and z1,
(d). circle center z = 1, radius 1; i.e., (x − 1)2 + y2 = 1, (e). circle
center (−2/3, 8/3), radius

√
32/3, (f). circle, (g). 0 < y < 2π, infinite

strip, (h). region interior to parabola y2 = 2(x − 1/2) but below the line
y = 3, (i). ellipse with foci at z1, z2 and major axis 2a (j). circle.
3.3. Use |z|2 = zz.

3.4. (a). z4 = zzzz = z z z z = (z)4, (b).
(

z1
z2z3

)
= z1

z2z3
= z1

z2z3
.

3.5. If |z| = 1, then z = z−1.
3.6. |Im (1− z + z2)| ≤ |1− z + z2| ≤ |1|+ |z|+ |z2| ≤ 7, |z4 − 4z2 + 3| =
|z2 − 3||z2 − 1| ≥ (|z2|− 3)(|z2|− 1).
3.7. We have ∣∣∣∣

2z − 1

4 + z2

∣∣∣∣ ≤
2|z|+ 1

|4− |z|2| =
2 · 3 + 1

|4− 32| =
7

5

and ∣∣∣∣
2z − 1

4 + z2

∣∣∣∣ ≥
|2|z|− 1|
|4 + |z|2|

=
2 · 3− 1

4 + 32
=

5

13
.

3.8. We shall prove that |1− zw| ≥ |z−w|. We have |1− zw|2− |z−w|2 =
(1−zw)(1−zw)−(z−w)(z−w) = 1−zw−zw+zwzw−zz+zw+wz−ww =
1− |z|2− |w|2+ |z|2|w|2 = (1− |z|2)(1− |w|2) ≥ 0 since |z| ≤ 1 and |w| ≤ 1.
Equality holds when |z| = |w| = 1.
3.9. (a). (z)2 = z2 iff z2 − (z)2 = 0 iff (z + z)(z − z) = 0 iff either
2Re(z) = z + z = 0 or 2iIm(z) = z − z = 0 iff z is purely imaginary or z is
real. (b). Write z = x+iy. Consider 2|z|2−(|Re z|+ |Im z|)2 = 2(x2+y2)−
(|x|+|y|)2 = 2x2+2y2−(x2+y2+2|x|y|) = x2+y2−2|x||y| = (|x|−|y|)2 ≥ 0.
3.10. Use the triangle inequality.
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3.11. We have
∣∣∣∣∣

n∑

k=1

zkwk

∣∣∣∣∣

2

=

(
n∑

k=1

zkwk

)(
n∑

ℓ=1

zℓwℓ

)
=

n∑

k=1

|zk|2|wk|2 +
∑

k ̸=ℓ

zkwkzℓwℓ

=

(
n∑

k=1

|zk|2
)(

n∑

k=1

|wk|2
)
−
∑

k ̸=ℓ

|zk|2|wℓ|2 +
∑

k ̸=ℓ

zkwkzℓwℓ

=

(
n∑

k=1

|zk|2
)(

n∑

k=1

|wk|2
)

−
∑

k<ℓ

|zkwℓ − zℓwk|2.

3.12. (a). cos(−π/6) + i sin(−π/6), (b). 5(cosπ + i sinπ).
3.13. (a). −π/8, (b). 5π/6, (c). 2π/3, (d). π.
3.14. Let z1 = r1eiθ1 , z2 = r2eiθ2 . Then, z1z2 = r1r2ei(θ1−θ2). Re(z1z2) =
r1r2 cos(θ1 − θ2) = r1r2 if and only if θ1 − θ2 = 2kπ, k ∈ Z. Thus, if and
only if Arg z1-Arg z2 = 2kπ, k ∈ Z. But for −π < Arg z1, Arg z2 ≤ π,
the only possibility is Arg z1=Arg z2. Conversely, if Arg z1=Arg z2, then
Re (z1z2) = r1r2 = |z1||z2|. Now, |z1 + z2| = |z1|+ |z2| ⇐⇒ z1z1 + z2z2 +
z1z2 + z2z1 = |z1|2 + |z2|2 + 2|z1|z2| ⇐⇒ z1z2 + z2z1 = 2|z1||z2| ⇐⇒
Re(z1z2+z2z1) = Re(z1z2)+Re(z2z1) = 2|z1||z2| ⇐⇒ Re(z1z2) = |z1||z2|
and Re(z1z2) = |z1||z2| ⇐⇒ Arg (z1) = Arg (z2).
3.15. If a is a positive real number, then

√
a denotes the positive square

root of a. However, if w is a complex number, what is the meaning of√
w? Let us try to find a reasonable definition of

√
w. We know that the

equation z2 = w has two solutions, namely z = ±
√

|w|ei(Argw)/2. If we

want
√
−1 = i, then we need to define

√
w =

√
|w|ei(Argw)/2. However,

with this definition, the expression
√
w
√
w =

√
w2 will not hold in general.

In particular, this does not hold for w = −1.
3.16. Use 1 − i =

√
2
[
cos
(
−π

4

)
+ i sin

(
−π

4

)]
and 8i − 8

√
3 = 16

[
cos 5π

6

+i sin 5π
6

]
.

3.17. Use |w − z|2 = (w − z)(w − z).
3.18. (a). z2 = 2i = 2eiπ/2, z =

√
2eiπ/4,

√
2 exp

[
i
2

(
π
2 + 2π

)]
,

(b). z2 = 1−
√
3i = 2e−iπ/3, z =

√
2e−iπ/6,

√
2ei5π/6,

(c). z4 = −16 = 24eiπ, z = 2 exp
[
i
(
π+2kπ

4

)]
, k = 0, 1, 2, 3,

(d). z4 = −8− 8
√
3i = 16ei4π/3, z = 2 exp

[
i
4

(
4π
3 + 2kπ

)]
, k = 0, 1, 2, 3.

3.19. Multiply 1 + z + z2 + · · ·+ zm−1 by 1− z.
3.20. Suppose all the roots are real. Let z = x be a real root. Then

a + ib =
(

1+ix
1−ix

)n
implies that |a + ib|2 =

∣∣∣ 1+ix
1−ix

∣∣∣
2n

=
(

1+x2

1+x2

)n
= 1, and

hence a2 + b2 = 1. Conversely, suppose a2 + b2 = 1. Let z = x + iy be a

root. Then we have 1 = a2+ b2 = |a+ ib|2 =
∣∣∣ (1−y)+ix
(1+y)−ix

∣∣∣
2n

=
(

(1−y)2+x2

(1+y)2+x2

)n
,

and hence (1 + y)2 + x2 = (1 − y)2 + x2, which implies that y = 0.
3.21. Verify directly.


