Ravi P. Agarwal • Kanishka Perera Sandra Pinelas

An Introduction to Complex Analysis

Springer

Lecture 10
 Mappings by Functions I

In this lecture, we shall present a graphical representation of some elementary functions. For this, we will need two complex planes representing, respectively, the domain and the image of the function.

Consider z - and w-planes with the points as usual denoted as $z=x+i y$ and $w=u+i v$. We shall visualize the function $w=f(z)$ as a mapping (transformation) from a subset of the z-plane (domain of f) to the w-plane (range of f).

The mapping

$$
\begin{equation*}
w=A z \tag{10.1}
\end{equation*}
$$

is known as dilation. Here, A is a nonzero complex constant and $z \neq 0$. We write A and z in exponential form; i.e., $A=a e^{i \alpha}, z=r e^{i \theta}$. Then,

$$
\begin{equation*}
w=(a r) e^{i(\alpha+\theta)} \tag{10.2}
\end{equation*}
$$

From (10.2), it follows that the transformation (10.1) expands or contracts the radius vector representing z by the factor $a=|A|$ and rotates it through an angle $\alpha=\arg A$ about the origin. The image of a given region is therefore geometrically similar to that region. Thus, in particular, a dilation maps a straight line onto a straight line and a circle onto a circle.

The mapping

$$
\begin{equation*}
w=z+B \tag{10.3}
\end{equation*}
$$

is known as translation; here, B is any complex constant. It is a translation, as can be seen by means of the vector representation of B; i.e., if $w=$ $u+i v, z=x+i y$, and $B=b_{1}+i b_{2}$, then the image of any point (x, y) in the z-plane is the point $(u, v)=\left(x+b_{1}, y+b_{2}\right)$ in the w-plane. Since each point in any given region of the z-plane is mapped into the w-plane in this manner, the image region is geometrically congruent to the original one. Thus, in particular, a translation also maps a straight line onto a straight line and a circle onto a circle.

The general linear mapping

$$
\begin{equation*}
w=A z+B, \quad A \neq 0 \tag{10.4}
\end{equation*}
$$

is an expansion or contraction and a rotation, followed by a translation.

Example 10.1. The mapping $w=(1+i) z+2$ transforms the rectangular region in Figure 10.1 into the rectangular region shown in the w-plane. This is clear by writing it as a composition of the transformations

$$
Z=(1+i) z \quad \text { and } \quad w=Z+2
$$

Since $1+i=\sqrt{2} \exp (i \pi / 4)$, the first of these transformations is an expansion by the factor $\sqrt{2}$ and a rotation through the angle $\pi / 4$. The second is a translation two units to the right.

Figure 10.1
The mapping

$$
\begin{equation*}
w=z^{n}, \quad n \in \mathbb{N}, \tag{10.5}
\end{equation*}
$$

in polar coordinates can be written as

$$
\rho e^{i \phi}=r^{n} e^{i n \theta} .
$$

Thus, it maps the annular region $r \geq 0,0 \leq \theta \leq \pi / n$, of the z-plane onto the upper half $\rho \geq 0,0 \leq \phi \leq \pi$, of the w-plane. Clearly, this mapping is one-to-one.

Example 10.2. Let S be the sector $S=\{z:|z| \leq 2,0 \leq \arg z \leq \pi / 6\}$. Find the image of S under the mapping $w=f(z)=z^{3}$. Clearly, we have

$$
f(S)=\{w:|w| \leq 8, \quad 0 \leq \arg w \leq \pi / 2\} .
$$

Example 10.3. Let S be the vertical strip $S=\{z=x+i y: 2 \leq x \leq 3\}$. Find the image of S under the mapping $w=f(z)=z^{2}$. Since $w=x^{2}-$ $y^{2}+2 i x y$, a point (x, y) of the z-plane maps into $(u, v)=\left(x^{2}-y^{2}, 2 x y\right)$ in the w-plane. Now, eliminating y from the equations $u=x^{2}-y^{2}$ and $v=2 x y$, we get

$$
u=x^{2}-\frac{v^{2}}{4 x^{2}} .
$$

Thus, a vertical line in the z-plane; i.e., $x=x_{0}$ fixed, maps into a leftwardfacing parabola with the vertex at $\left(x_{0}^{2}, 0\right)$ and v-intercepts at $\left(0, \pm 2 x_{0}^{2}\right)$.

