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Abstract

A wide range of problems arising in real-world applications
needs to be solved as linear approximation problems, since
they might contain some errors in data. This thesis focuses
on solving such problems with the method of the total least
squares and the reduction to the so-called core problem
within, which is briefly recapitulated in Part I. Although the
core problem concept brought important results on solvabil-
ity of the vector right-hand side problem, it is not completely
true for the problem with matrix right-hand side as the core
problem within may not have a TLS solution. Therefore, this
thesis aims to examine the ‘internal structure’ of the matrix
right-hand side core problems as well as to ‘look around’ this
problem in order to find possible generalizations.

In Part II we build general algebraic framework, which en-
ables to interpret the core problem reduction as the orthogo-
nal projection from the set of general approximation problems
onto the set of core problems and partially open the question
of the core problem (de)composition and (ir)reducibility.

Part III extends the core problem theory with three possi-
ble generalizations, namely we present the core problem re-
ductions within the linear approximation problem with tensor
right-hand side, the bilinear problem with matrix right-hand
side and the multilinear problem with tensor right-hand side.
The text of this thesis is complemented by copies of the rel-
evant published articles of the applicant.

Keywords: linear approximation problem; total least squa-
res; core problem; core problem reduction; orthogonal trans-
formation; matrix right-hand side; problem (de)composition;
irreducible problem; tensor; tensor right-hand side; bilinear
problem; multilinear problem
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Notation & abbreviations

N, N0 semi-rings of positive and non-negative integers
R field of real numbers
C field of complex numbers
F field of real or complex numbers; either F = R or F = C
Rn vector space of real vectors of length n
Rm×n vector space of real m-by-n matrices
Rm1×···×mk vector space of real k-way tensors
O, Om group of orthogonal matrices, ditto of dimension m
U, Um group of unitary matrices, ditto of dimension m
M , M (R) the set of all real matrices
CP the set of all core problems
GP the set of all general (linear approximation) problems
vT transposition of the vector v (treated as n-by-1 matrix)
MT transposition of the matrixM
MH Hermitian transposition of the matrixM ;MH =MT

M−1 inverse of the matrixM
M † Moore–Penrose pseudoinverse of the matrixM
R(M) range of the matrixM
N (M) null-space of the matrixM
dim(V ) dimension of linear vector space V
∼ similarity relation
⊥ orthogonality relation
∥v∥ 2-norm of the vector v
∥M∥F Frobenius norm of the matrixM
det(M) determinant of the square matrixM
rank(M) rank of the matrixM
σj(M) jth largest singular value of the matrixM
I, Im identity matrix, ditto of order m
0m,n m-by-n zero matrix
0m1,...,mk

zero tensor of order k
♡ number (entry) that may be zero as well as nonzero
♣ number (entry) that is nonzero
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M ⊗N Kronecker product of matricesM and N
M ⊕N 2-by-2 (block) diagonal matrix withM and N on diagonal
diag(M,N) 2-by-2 (block) diagonal matrix withM and N on diagonal
diagk(T ,N ) analogy of diag for tensors of order k
T {ℓ} ℓ-mode matricization of the tensor T
M ×ℓ T ℓ-mode matrix-tensor product; (M ×ℓ T ){ℓ} =MT {ℓ}

(M1, . . . ,Mk|T ) linear transformation of T ; (M1, . . . ,Mk|T ) =M1×1. . .Mk×kT

SVD singular value decomposition
HOSVD high-order SVD (Tucker decomposition)
TC Tucker core from the Tucker decomposition
TLS total least squares (minimization, solution, etc...)
NGN non-generic (TLS approach, solution, etc...)
CP core problem
CPℓ the ℓth core problem property
CPR core problem reduction
CPC core problem complement
GP general (linear approximation) problem
TA tuple alignment (set of conditions on dimensions)
TM tuple matricization (mapping from M ζ to M )
TT tuple transformation (group of allowed transformations)
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Introduction

Linear approximation problems, which can be seen as problems contam-
inated by some errors in data, have been intensively studied during last
decades as they very often yield from some real-world applications. Since
such problems cannot be solved without some corrections, some appropri-
ate method (very often a kind of the least squares methods) has to be used.
We are in particular interested in solving such problems in the sense of the
total least squares (TLS), but other orthogonally invariant optimizations are
also relevant. The TLS method allows to correct the right-hand side (ob-
served data) of the problem, as well as the system matrix (the mapping) in
order to achieve the solution of the modified problem and consequently the
approximate solution of the original problem. The simplest variants of such
problems are linear approximation problems with single (or vector) right-
hand side and with multiple (or matrix) right-hand side, respectively. For
the above mentioned approximation problems there exist a lot of theory in-
cluding the algorithms and solvability analysis, e.g., in [2] some aspects in
solvability analysis for TLS problems for the vector right-hand side case can
be found or in [28] both vector and matrix right-hand side cases are stud-
ied. However, there were still many things unclear — the main difficulty of
the TLS approach is the fact that some problems may not have a solution;
see [5].

The core problem concept introduced by Paige and Strakoš (see [20])
brought important insight to the solvability of problems with vector right-
hand side case. The core problem is defined as a minimal dimensioned sub-
problem of the original problem containing all the necessary and sufficient
information for finding the solution of the whole problem, which moreover
can be reached by orthogonal transformations. The key property of the core
problem within problems with vector right-hand side is that it always has the
unique TLS solution (see [20]). Representation of this TLS solution (of the
core problem) in the context of the original problem then depends on its
properties. In this way the core problem allows to explain when the original
problem has TLS solution and when does not.

Successively, the core problem concept was generalized for the prob-
lems with matrix right-hand sides (see [6] and [7]) including the analysis of
solvability (see [4]) of core problems with multiple right-hand sides in the
TLS sense. It was shown that, contrary to the single right-hand side case,
a core problem with multiple right-hand sides may not have a TLS solution.
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The straightforward question: ‘Why is it so?’ led to the natural considera-
tion of directions of further research. The first one is to look inside the core
problem and to try to find some internal structure, the second one is to look
at the core problems from the wider context and try to find possible ways of
further generalization. Both of these ways are covered in this thesis.

This thesis is organized in three main parts, after this Introduction Part I
summarizes basics about linear approximation problems and the well-known
facts and results about the total least squares (TLS) methods (in particular
Chapter 1 discusses the so-called vector and matrix right-hand side prob-
lems, Chapter 2 then formulates an interesting open question related to the
matrix right-hand side core problems while motivating two ways of the fur-
ther analysis). Parts II and III then represent these two ways that we call:
the inner and the outer view— looking inside and around the core problems,
respectively. The thesis is enclosed by Conclusion and a brief curriculum
vitæ of the applicant.

Part II consists of three chapters: Chapter 3 analyzes several algebraic
structures in the set of all matrices related to direct summation and orthogo-
nal transformations in order to introduce useful concepts, notation, and ter-
minology. Chapter 4 then generalizes these concepts to tuples of matrices
and so-called aligned tuples — tuples that can be matricized in a nontrivial
way and also orthogonally transformed in this matricized form. Chapter 5
finally applies these concept to special cases of aligned tuples — data ma-
trices [B,A] of linear approximation problemsAX ≈ B. This enables to better
understand (de)composing and (ir)reducibility of core problems.

Part III consists of four chapters. Chapter 6 briefly recapitulates the rela-
tionships (in terms of generalizations and specializations) among individual
linear approximation problems. The remaining three chapters discuss (the
linear approximation problem, the TLS minimization, the core problem re-
duction and its properties for) the individual formulations: Chapter 7 for the
tensor right-hand side case; Chapter 8 for the bilinear case with matrix right-
hand side; and Chapter 9 for the k-linear case with tensor right-hand side.

Each of the individual parts ends with the copy of related publishedworks
of the applicant: Part I is enclosed by a very brief two-pages contribution
which represents rather minor result (but anyway related to the topic). The
main results are presented in four papers enclosing Parts II (one paper) and
III (three papers).
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Part I

Basic linear
approximation
problems and
the total least
squares method
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1 Introduction to linear
approximation problems

Linear approximation problems appear in many real-world applications, see
for example [26], [27]. They typically have the form of a ‘system of linear
equations’ but without the solution in the classical meaning, i.e., the equality
cannot be reached as the right-hand side is not in the range of the system
matrix. Thus, it does not represent a linear system in fact, but the problem
has to be treated via some kind of minimization process— usually some form
of least squares technique; see [17], [1], [3, Chaps. 5 and 6]. Here we focus
on the so-called total least squares (TLS) minimization; see for example [2],
[28], [3, Sec. 6.3]. The so-called core problem reduction (CPR) is a well-
established concept for solving the linear approximation problems by using
the TLS method in the simplest case; see [19], [20].

In this chapter we start with a brief recapitulation of the theory. We in-
troduce the TLS formulation for the simplest (namely the vector right-hand
side) linear approximation problem and describe the reduction of the orig-
inal problem to the core problem within. We remind how the core problem
concept clarified the solvability of the TLS problem in the vector right-hand
side case. We also briefly recapitulate and point out difficulties of its most
straightforward generalization — the matrix-right hand side case.

1.1 Problem with single (vector)
right-hand side

The simplest case of linear approximation problems is a problem with a vec-
tor on the right-hand side, i.e.,

Ax ≈ b, A ∈ Rm×n, b ∈ Rm such that b /∈ R(A). (1.1)

The last condition simply says, that there is no vector x for which Ax = b.
This may happen, e.g., due to contamination of real application data [b, A] by
some errors. Instead, we seek for some ‘completely different’ x, that allows
to equalize the left- and right-hand sides at least approximately. The way
of the approximation, however, needs to be specified; for example, one can
minimize the 2-norm of residuum b− Ax, yielding the ordinary least squares
solution.
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1.1.1 Total least squares and its orthogonal invariance
By solving the linear approximation problem (1.1) in the sense the total least
squares (TLS) we mean solving the following minimization problem

min
E, g

∥∥[ g E
]∥∥

F subject to (b+ g) ∈ R(A+ E). (1.2)

Then by the TLS solution we mean any vector xTLS such that

(A+ E)xTLS = (b+ g). (1.3)

Since the Frobenius norm is orthogonally invariant, Paige and Strakoš (see
[19], [20]) pointed out that any orthogonal transformation of the problem
does not affect the solution in the following sense.

First, let us denote by

Om = {P ∈ Rm×m : P−1 = P T} (1.4)

the set of all orthogonal matrices of order m. For any two orthogonal matri-
ces P ∈ Om and Q ∈ On, the original problem Ax ≈ b can be transformed into
a tilded one

Ãx̃ = (P TAQ)(QTx) ≈ (P Tb) = b̃,

where Ã ≡ P TAQ, x̃ ≡ QTx and b̃ ≡ P Tb; equivalently

[
b̃ Ã

] [ −1
x̃

]
=

(
P T [ b A

] [ 1 0
0 Q

])([
1 0
0 QT

] [
−1
x

])
≈ 0.

Let for the given A and b exist E = E(A, b), g = g(A, b) satisfying (1.2), and
therefore also xTLS = TLS(A, b) satisfying (1.3). Then, by the multiplication of
the equality (1.3) by P and Q(

P T(A+ E)Q
)(

QTxTLS

)
=
(
P T(b+ g)

)
,

we immediately get Ẽ = P TEQ = E(Ã, b̃), g̃ = P Tg = g(Ã, b̃), and x̃TLS =

QTxTLS = TLS(Ã, b̃) for the tilded problem. It follows directly from the fact
that ∥∥[ g̃ Ẽ

]∥∥
F =

∥∥∥∥P T [ g E
] [ 1 0

0 Q

]∥∥∥∥
F
=
∥∥[ g E

]∥∥
F .

Consequently, if the original problem Ax ≈ b has a TLS solution, then the
tilded (orthogonally transformed) problem also has a TLS solution, and there
is a simple relation between them; see the following diagram:

Ax ≈ b ←→ Ãx̃ ≡ (P TAQ)(QTx) ≈ (P Tb) ≡ b̃

↓ ↓
xTLS ←→ x̃TLS = QTxTLS.
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1.1.2 Core problemwithin Ax ≈ b

Paige and Strakoš in [20] further introduced the so-called core problem con-
cept. This enabled to divide the problem into two subproblems by using the
orthogonal transformation above, such that the only one of them contains
the relevant and all the necessary data to find the solution of the original
problem.

The orthogonal transformation realized by P ∈ Om and Q ∈ On applied
on the original problem represented by [b, A] yields the tilded problem [̃b, Ã]
in the following block form

[
b̃ Ã

]
= P T [ b A

] [ 1 0
0 Q

]
=

[
b1 A11 0
0 0 A22

]
. (1.5)

Here only the subproblem A11x1 ≈ b1 needs to be solved (as the second part
A22x2 ≈ 0 obviously has trivial solution).

Such transformation always exists (see [20]), provided the other matrix
A22 might be degenerated (or trivial, or empty), i.e., it may have no columns,
or no rows (or both). The first subproblem obtained by such transformation
which hasminimal dimensions among all suitable orthogonal transformations
is called the core problem. The corresponding orthogonal transformation
(realized by P and Q) is called the core problem revealing transformation.

The core problem A11x1 ≈ b1 complies with a bunch of interesting prop-
erties, namely (see [20], [11]):

∗(CP1) The matrix A11 ∈ Rm×n is of full column rank equal to n.
(CP2) The vector b1 ∈ Rm is nonzero.
∗(CP3) The scalars uTi b1 ∈ R are nonzero (where ui are the left singular vectors

of AT
11), for i = 1, . . . ,m.

(CP4) The matrix [b1, A11] ∈ Rm×(n+1) is of full row rank equal to m.
(CP5) The scalars eT1vℓ ∈ R are nonzero (where e1 is the first Euclidean vector

and vℓ are the right singular vectors of [b1, A11]), for ℓ = 1, . . . , n, n+ 1.
(CP6) Singular values of the matrix A11 are simple.
(CP7) Singular values of the matrix [b1, A11] are simple.

Among all the properties, there are two particularly notable things. First:

The minimality of the subproblem A11x1 ≈ b1 is equivalent to (CP1) ∧ (CP3)

see for example [4]. Another very important property is that:

The core problem A11x1 ≈ b1 always has the unique TLS solution x1,TLS

see [20]; in [11, Appendix A] this property is listed as (CP8).
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If the original problem Ax ≈ b also has the unique TLS solution xTLS, there
is a straightforward relation between them through the transformation. See
the following diagram:

Ax ≈ b −→ A11x1 ≡ (P T
1 AQ1)(Q

T
1x) ≈ (P T

1 b) ≡ b1
↓ ↓

xTLS ←→ x1,TLS = QT
1xTLS, xTLS = Q1

[
x1,TLS
0

]
Here

P =
[
P1 P2

]
, P1 ∈ Rm×m, Q =

[
Q1 Q2

]
, Q1 ∈ Rn×n.

Matrices P1 and Q1 reduce (or restrict) the original problem to the core prob-
lem within. Thus, P1 and Q1 represent the core problem reduction (CPR).

Since we are able to switch between x1,TLS and xTLS by using just the Q1

matrix:
The core problem contains all the necessary and sufficient information

for solving the original problem (see also [20]); at least in the case, when the
original problem has the unique TLS solution, as we have just shown. A brief
discussion about the general case follows in the next section.

Finally, note that the core problem revealing transformation (P , Q) or the
core problem reduction (P1, Q1) can be obtained by using the singular value
decomposition (SVD) of the matrix A, which is useful mainly for the theoret-
ical analysis, or computed by Golub–Kahan iterative bidiagonalization of the
matrix [b, A], both ways have been presented already in [20].

1.1.3 TLS solution of Ax ≈ b and the non-generic approach
The standard approach to the analysis of the solvability of TLS problems
including results on the necessary and sufficient condition for the existence
of the solution can be found in the classical paper [2]. Namely, it is shown
there that for the given A and b the TLS solution may not exist, and if it does,
it may not be unique. In the case of non-uniqueness, we usually want to
choose one particular, typically (but not necessarily) the minimal in the 2-
norm.

These issues were further developed in [28], here the authors among
other things introduce the so-called non-generic approach for the problems
with no TLS solution. It basically represents replacing the TLS minimization
(1.2), equivalently formulated as

min
E, g

∥∥[ g E
]∥∥

F subject to ∃x : (A+ E)x = b+ g,

by another similar optimization problem. That is essentially the same mini-
mization but with additional constrain

min
E, g

∥∥[ g E
]∥∥

F subject to ∃x : (A+ E)x = b+ g ∧
[
−1
x

]
⊥ Vk,
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where Vk is a span of right singular vectors of [b, A] corresponding to k small-
est (distinct) singular values of [b, A]; see [28] for details.

Note that the individual singular values may be of higher multiplicities, so
dim(Vk) ≥ k in this formulation. Moreover, if the (k + 1)th singular value is
multiple, the above given non-generic minimization either has no solution,
or it has infinitely many solutions; in the latter case we again want to choose
one particular, typically (but not necessarily) the minimal in the 2-norm.

Further note that the original TLS minimization can be seen as the non-
generic minimization with k = 0. This motivates a kind of iterative process
usually called the classical TLS algorithm: In the kth step, it tries to solve
the non-generic minimization with Vk, and if there is no solution, it moves to
(k + 1)th step; see [28] or [5].

Consequently, the approximated TLS or non-generic (NGN for short) so-
lution of Ax ≈ b is reached by depth-first searching the following decision-
tree:

Ax ≈ b
↓

Yes ← Does it have the TLS solution? → No
↓ ↓

Is the TLS solution unique? Is the NGN solution unique?
↓ ↓ ↓ ↓

Yes No Yes No
x ≡ xTLS x ∈ {xTLS} x ≡ xNGN x ∈ {xNGN}

Recall that in the cases of non-uniqueness we have to decide somehow,
which solution to choose.

1.1.4 Solving of Ax ≈ b by core problem reduction
The linear approximation problem Ax ≈ b can be via the core problem reveal-
ing transformation (1.5) structured such that

P T [ b A
] [ 1 0

0 Q

]
=

[
b1 A11 0
0 0 A22

]
.

Since its solvability in the TLS sense strongly relies on the properties of the
SVD of [b, A], the core problem concept brought some insight to it. The SVD
of the whole matrix consists of the SVDs of the individual blocks of the right-
most block-diagonal matrix. Specifically, the set of singular values (including
multiplicities) of [b, A] is the union of such sets for [b1, A11] and A22. Possible
TLS solvability and uniqueness of the solution then depends on the occur-
rence of the smallest singular value in these two blocks. In particular (see
the original paper [20]):

• σmin(A22) > σmin([b1, A11])⇐⇒ TLS solution of (1.1) exists and is unique,
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• σmin(A22) = σmin([b1, A11])⇐⇒ TLS solution of (1.1) exists, but not unique,
• σmin(A22) < σmin([b1, A11])⇐⇒ TLS solution of (1.1) does not exist,

where σmin denotes the smallest singular value of the given matrix.
Following diagrams illustrate the relations of the results when solving the

TLS of the original problem, and with the use of core problem reduction with
respect to four possible situations (see the decision-tree in the previous sec-
tion) — there exists unique, or non-unique TLS solution, or unique or non-
unique non-generic solution of the original problem.

We start with the first two cases, i.e., we assume that Ax ≈ b has a TLS
solution, i.e.,

σmin([b, A]) = σmin([b1, A11]) ≤ σmin(A22)

(recall that CPR stands for the core problem reduction; note that these dia-
grams are rotated by 90° in comparison to the previous one in Section 1.1.2):

• There exists the unique TLS solution of Ax ≈ b.

Ax ≈ b
TLS−−→ xTLS unique

↓ CPR ↕
A11x1 ≈ b1

TLS−−→ x1,TLS

• There exists a non-unique TLS solution of Ax ≈ b.

Ax ≈ b
TLS−−→ {xTLS} non-unique

↓ CPR ↑ chooses the min. 2-norm
A11x1 ≈ b1

TLS−−→ x1,TLS

The first diagram is already derived in Section 1.1.2, the other one follows
from the properties of the core problem (in particular from a property analo-
gous to (CP3): all right singular vectors of [b1, A11] has nonzero first compo-
nent); see [20]. The important thing is that the CPR chooses automatically
the TLS solution minimal in the 2-norm.

If the TLS solution of Ax ≈ b does not exist, i.e.,

σmin([b, A]) = σmin(A22) < σmin([b1, A11]),

the non-generic approach is used, see [28]. We again distinguish two pos-
sibilities:

• There exists a unique non-generic solution in AX ≈ B.

Ax ≈ b
NGNTLS−−−−−→ xNGN unique

↓ CPR ↕
A11x1 ≈ b1

TLS−−→ x1,TLS
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• There does not exist a unique non-generic solution in Ax ≈ b.

Ax ≈ b
NGNTLS−−−−−→ {xNGN} non-unique

↓ CPR ↑ chooses the min. 2-norm
A11x1 ≈ b1

TLS−−→ x1,TLS

Themechanisms here are very similar to the previous two cases. For detailed
explanation we again refer to the original paper [20].

Consequently, instead of reaching the approximate TLS or NGN (minimum
2-norm) solution of Ax ≈ b by the decision-tree from Section 1.1.4, we can
follow much simpler way

Ax ≈ b
CPR−−→ A11x1 ≈ b1

TLS−−→ x1,TLS −→ x ≡ Q

[
x1,TLS
0

]
.

1.2 Problem with multiple
(matrix) right-hand side

The straightforward generalization of a single right-hand side linear approx-
imation problem is a multiple (or matrix) right-hand side problem,

AX ≈ B, A ∈ Rm×n, B ∈ Rm×d such that R(B) ̸⊆ R(A); (1.6)

see [28]. It can be motivated, e.g., by the need to solve several (vector
right-hand side) problems with the same system matrix, but different right-
hand sides simultaneously. For instance, consider a problem with a time-
dependent right-hand side

Axj ≈ bj, bj = b(tj), j = 1, 2, . . . , d;

for applications see, e.g., [26], [27].

1.2.1 TLS solvability of the problemwith multiple right-hand
sides

The TLS minimization (1.2) can be easily generalized for problem (1.6) as

min
E,G

∥∥[ E G
]∥∥

F subject to R(B + E) ⊆ R(A+G). (1.7)

The solvability analysis is even more complicated than in the single right-
hand side case (and it is out of the scope of this work). The results on solv-
ability established in classical works [2] and [28] were supplemented in [5],
see also [29]. In particular, in [5] all linear approximation problems (1.6) are
sorted into four classes according to their solvability properties.
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This classification is based on dimensions, multiplicities of singular values
of [B,A] ∈ Rm×(n+d), and ranks of specific blocks of matrix V of right singular
vectors of [B,A]. Briefly (suppose for simplicity m ≥ n+ d), let

[B,A] = UΣV T , where Σ =

[
diag(σ1, . . . , σn+d)

0

]
∈ Rm×(n+d), (1.8)

be the SVD of [B,A]. Let numbers q (0 ≤ q ≤ n) and e (1 ≤ e ≤ d) denote the
left and right multiplicities, respectively, of σn+1, i.e.,

σn−q > σn−q+1 = · · · = σn+1 = · · · = σn+e︸ ︷︷ ︸
(q + e)-tuple singular value

> σn+e+1. (1.9)

Then V can be divided in the following blocks whose ranks determine the
classification

V =

[
V11 V12 V13
V21 V22 V23

]
} d
} n . (1.10)︸ ︷︷ ︸

n− q
︸ ︷︷ ︸
q + e

︸ ︷︷ ︸
d− e

Note that if q = n or e = d, then σn−q or σn+e+1, respectively, does not exist
and matrices [V11

V21
] or [V13

V23
], respectively, have no columns. In particular for

d = 1, when the matrix right-hand side problem is effectively reduced to the
vector one, e = d = 1.

All linear approximation problems AX ≈ B can be now sorted into follow-
ing classes:

F if rank([V12, V13]) = d (the so-called generic problem), with three sub-
classes:

F1 if rank(V12) = e (and thus rank(V13) = d− e),
F2 if rank(V12) > e and rank(V13) = d− e, and
F3 if rank(V13) < d− e (and thus rank(V12) > e);

note that F = F1 ∪ F2 ∪ F3; and

S if rank([V12, V13]) < d (the so-called non-generic problem).

Clearly, in the vector right-hand side case, where V13 has no columns (so it
is always of the full column rank 0), the problems can belong only to F1 or S.

In [5] it is shown that:

AX ≈ B has a TLS solution if and only if it belongs to F1 ∪ F2

besides problems in F3 ∪ S do not have a TLS solution. It is in particular
interesting, because the classical TLS algorithm (briefly mentioned in Sec-
tion 1.1.3) can be extended for the multiple right-hand side problems (see
[28]), it is commonly used, and it is commonly believed, that it calculates
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the TLS solution for all the class F problems (that is why these are called
generic, and the other non-generic). In [5] it is further shown, that the clas-
sical TLS algorithm moreover reaches the TLS solution only for sub-class F1

problems. The approximate solutions calculated for F2 and F3 problems are
rather non-generic solutions. Very simple modification of the classical TLS
algorithm that reaches TLS solution (at least some, not necessarily the one
with minimal norm) also for sub-class F2 problems has been proposed in the
proceedings paper [12]; see the included copy at page 35.

1.2.2 Core problem
Analogously to the single right-hand side case, orthogonal transformations
of (1.6) do not change the norm in (1.7). In matrix right-hand side case it is
executed by orthogonal matrices (P,Q,R) ∈ Om ×On ×Od, such that

[B̃, Ã] = P T[B,A]

[
R 0
0 Q

]
=

[
B1 0 A11 0
0 0 0 A22

]
. (1.11)

The subproblem A11X11 = B1 having the minimal dimensions among all such
transformations is again called the core problem, as it is introduced in [6]. It
again has a lot of interesting properties, e.g.:

∗(CP1) The matrix A11 ∈ Rm×n is of full column rank equal to n.
∗(CP2) The matrix B1 ∈ Rm×d is of full column rank equal to d.
∗(CP3) Matrices UT

i B1 ∈ Rµi×d are of full row rank equal to µi, where columns
of Ui represent basis of: either the left singular subspace of A11 corre-
sponding to the ith largest singular value, for i = 1, . . . , ξ; or the null-
space of AT

11, for i = ξ + 1.

We particularly mention these three, because:

The minimality of subproblem A11X11 ≈ B1 is equivalent to (CP1)–(CP3)

but all of the properties (CP1)–(CP7) can be generalized from the vector, to
the matrix right-hand side case; see [11, Appendix A]. For example:

(CP4) The matrix [B1, A11] ∈ Rm×(n+d) is of full row rank equal to m.
(CP6) Multiplicities of singular values of the matrix A11 are bounded by d.
(CP7) Multiplicities of singular values of the matrix [B1, A11] are bounded by d.

Most of the theoretical results are again based on the SVDs (see [6]) which
is not suitable for actual computations. The generalization of the procedure
for the core problem extraction based on the Golub–Kahan bidiagonalization
can be found in [7].
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Although the theory can be nicely generalized from the single right-hand
side setting, the most interesting result related to core problems and TLS
cannot be generalized. It was shown that:

The core problem A11X11 ≈ B1 may not have a TLS solution

the (CP8) property generalizes as: ifA11X11 ≈ B1 has a TLS solution, then it is
unique; see [4]. This fact served as the main motivation for further research
in different directions which will be covered in following parts of this thesis.
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2 Motivation for two
directions of research

The last chapter ended with the main motivation for this whole thesis. The
matrix right-hand sided core problem may not have a TLS solution. The ob-
vious questions are: ‘Why is it so?’ or more precisely: ‘What does it mean,
e.g., in terms of data A and B (or A11 and B1)?’, ‘What is wrong with the data?’
or ‘Can we somehow identify such problems?’ There are two usual and very
natural directions of research in such situation:

• To look inside the core problem. Try to find some potential internal
structure of the core problem and study it from this perspective.

• To look at the core problems from the outside, in a wider context, i.e.,
look at more general settings.

Both of these ways are studied in this thesis, the ‘inner view’ in the Part II
(see page 37; see also page 81 for the main already published results), the
‘outer view’ in the Part III (see page 109; see also page 139 for the main
already published results).

2.1 Inner view --- look inside
the core problem

Since studying the internal structure of a core problem (with matrix right-
hand side) seems to be too technical in the general case, the ‘reverse-engi-
neering strategy’ can be useful, i.e., to take some existing core problems and
use them as building blocks; see also Figure 2.1. This approach was already
successfully applied and resulted in the so-called composed (or reducible)
core problems; see [4]. Part II of this thesis formally introduces algebraic
structures with which we work — including general algebraic principles and
properties of composing (sets of) matrices as well as the connection to the
context of linear approximation problems. Eventually, results on solvability
of composed problems are presented, some parts were already published in
[10] (see page 83).
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B1 A11

↕ orthogonal transformation

B
(α)
1

0

0

B
(β)
1

A
(α)
11

0

0

A
(β)
11

↕ (de)composition⊕
B

(α)
1 A

(α)
11 B

(β)
1 A

(β)
11

Figure 2.1: Exploring internal structure of the matrix right-hand side core
problem — some core problems can be after a suitable orthogonal transfor-
mation decomposed into two (or more) fully independent core subproblems.

2.2 Outer view --- look around
the core problem

The other direction covers several ways of generalizations of the matrix
case: namely the tensor right-hand side TLS problem, the bilinear TLS prob-
lem, and their unification — the general multilinear (or k-linear) TLS prob-
lems; see also Figure 2.2. This direction is covered in Part III of this thesis.
All three generalizations have already been published in a series of papers,
the tensor case in [8] (see page 141), the bilinear case in [9] (see page 167),
and the multilinear case in [11] (see page 187).
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A

x

≈

b

↕↓ generalization specialization ↑

A X ≈ B

↕ ↕
AL X

AR
≈ B

A X ≈ B

↕ ↕

A1 X

A2

A3

≈ B

Figure 2.2: Sequence of generalizations (or specializations) of linear approx-
imation problems: the vector right-hand side problem Ax ≈ b (top line), the
matrix right-hand side problem AX ≈ B (second line), the tensor right-hand
side problem A×1X ≈ B (third line, right), the bilinear matrix right-hand side
problem ALXA

T
R ≈ B (third line, left), and the multilinear (k-linear, here with

k = 3) tensor right-hand side problem (A1, A2, A3|X ) ≈ B (last line).
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Minor published results
related to the Part I

1. I. Hnětynková, M. Plešinger, and J. Žáková, Modification of TLS algo-
rithm for solving F2 linear data fitting problems, Proceedings in Applied
Mathematics and Mechanics 17 (1) (2017), pp. 749–750.
https://doi.org/10.1002/pamm.201710342
See also page 35, or reference [12].
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PAMM · Proc. Appl. Math. Mech. 17, 749 – 750 (2017) / DOI 10.1002/pamm.201710342

Modification of TLS algorithm for solving F2 linear data fitting problems

Iveta Hnětynková1,∗, Martin Plešinger2,∗∗, and Jana Žáková2,∗∗∗

1 Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Praha 2, Czech Republic
2 Technical University of Liberec, Department of Mathematics, Studentská 1402/2, 461 17 Liberec, Czech Republic

It has been proved that the classical TLS algorithm fails to construct a TLS solution of linear data fitting problems AX ≈ B
that belong to the class F2. It will be shown how to modify this algorithm in order to reach a TLS solution. Such solution is
not necessarily the minimum 2-norm or Frobenius norm one. A few ideas how to decrease its norm are briefly discussed.

c© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Classification of TLS problems

We are interested is solving a linear approximation problem by using the total least squares (TLS) minimization, i.e.,

AX ≈ B, A ∈ Rm×n, X ∈ Rn×d, B ∈ Rm×d, with m > n+ d, R(B) 6⊆ R(A), ATB 6= 0, (1)
min ‖[G,E]‖F subject to R(B +G) ⊆ R(A+ E). (2)

Any matrix XTLS satisfying (A + E)XTLS = B + G for the minimizer [G,E] is called the TLS solution. Analysis of such
problems can be based on the (economic) singular value decomposition (SVD)

[B,A] = UΣV T , U ∈ Rm×(n+d), Σ = diag(σ1, σ2, . . . , σn+d), V ∈ R(n+d)×(n+d);

see [1–3, 6–8], see also [4, 5]. Let z be the number of distinct singular values of [B,A]. Denote their multiplicities by mt,
t = 1, . . . , z. Let σn+1 be the kth largest singular value with the multiplicity mk = q + e so that σn−q > σn−q+1 =
· · · = σn+1 = · · · = σn+e > σn+e+1. According to [3], consider the following notation of sub-matrices and sub-columns of
V ∈ R(n+d)×(n+d),

V =

[
V11 V12 V13
V21 V22 V23

]
=

[
V ′1,1 · · · V ′1,z
V ′2,1 · · · V ′2,z

]
=

[
v1,1 · · · v1,n+d
v2,1 · · · v2,n+d

]
} d
} n

, (3)

where V11 ∈ Rd×(n−q), V12 ∈ Rd×(q+e), V13 ∈ Rd×(d−e); V ′1,t ∈ Rd×mt , t = 1, . . . , z; and v1,j ∈ Rd, j = 1, . . . , n + d.
Thus in particular V12 = V ′1,k = [v1,n−q+1, . . . , v1,n+e] is the sub-block corresponding to σn+1.

Analysis in [3] divides problems (1) into several classes based on the properties of the blocks in (3). If rank([V12, V13]) = d,
then (1) belongs to the set F (corresponding to generic problems in [6]). Otherwise it belongs to the set S (nongeneric
problems in [6]). The set F is futher divided into three mutually disjoint subsets, F = F1 ∪ F2 ∪ F3, where:

• If rank(V12) = e ∧ rank(V13) = d− e, then (1) belongs to F1;
• if rank(V12) > e ∧ rank(V13) = d− e, then (1) belongs to F2;
• if rank(V12) > e ∧ rank(V13) < d− e, then (1) belongs to F3.

The problem (1) has a TLS solution if and only if it belongs to F1 ∪ F2, i.e. rank([V12, V13]) = d ∧ rank(V13) = d− e. The
minimum Frobenius and 2-norm TLS solution of F1-problem takes the well-know closed-form

XTLS = −[V22, V23][V12, V13]†, (4)

where † denotes the Moore–Penrose pseudoinverse. However, this is not true for the F2-problems; see [3]. Note that for
problems in F3 and S the TLS solution does not exist.

2 Modification of the TLS algorithm

The problem (2) is typically solved by the classical TLS algorithm (see [6, pp. 87–88], [3, p. 767]). This algorithm seeks for
the largest ` so that rank([V ′1,`, . . . , V

′
1,z]) = d, and gives the output approximation in the form

XOUT = −[V ′2,`, . . . , V
′
2,z][V

′
1,`, . . . , V

′
1,z]
†. (5)

∗ Corresponding author: e-mail iveta.hnetynkova@mff.cuni.cz
∗∗ E-mail martin.plesinger@tul.cz
∗∗∗ E-mail jana.zakova@tul.cz
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750 Section 17: Applied and numerical linear algebra

If (1) belongs to F , then [V12, V13] = [V ′1,k, . . . , V
′
1,z] is of rank d, whereas rank of V13 = [V ′1,k+1, . . . , V

′
1,z] ∈ Rd×(d−e),

e ≥ 1, is always smaller. Thus ` = k and the right-hand sides of (4) and (5) coincide. However, (5) represents a TLS
solutions only for F1-problems, since a TLS solution of F2-problems can not be expressed in this form; see [3]. Here (5) can
be understood only as a nongeneric-like solution of (2). For S-problems, [V12, V13] is always rank-deficient and thus ` < k.

These results reveal that it is necessary to modify the TLS algorithm in order to construct a TLS solution for F2-problems.
Based on [3], determination of a TLS solution requires to find an orthogonal matrix in the orthogonal group O(s) = {Q ∈
Rs×s : QT = Q−1}, s = q + e, such that [V12Q,V13][0, Id]

T ∈ Rd×d is invertible. Then the matrix

XTLS = −[V22Q,V23]

[
0
Id

](
[V12Q,V13]

[
0
Id

])−1
(6)

represents the corresponding TLS solution. Denote Q[F ] and Q[2] the matrices corresponding to the minimum Frobenius
and 2-norm TLS solution, respectively. For F1-problems, Q[F ] = Q[2] and this matrix can be obtained explicitly by a (left-
right-reordered) LQ decomposition of V12, or implicitely by the Moore–Penrose pseudoinverse of [V12, V13] in (4). However,
for F2-problems Q[F ] and Q[2] may be different. Their determination would require searching at least the whole special
orthogonal group SO(s) defined as the largest connected subgroup of O(s) (since (6) is independent on the sign of det(Q));
see [3]. This is for larger s computationally unfeasible. In order to construct some (not necessarily minimum norm) TLS
solution, we reduce the search set. First, we replace O(s) by its subgroup of permutation matrices P(s) = {Π ∈ {0, 1}s×s,
ΠT = Π−1}, i.e., the smooth minimization is replaced by a discrete minimization of the size s! with s = q + e. Now we are
able to construct a TLS solution. For the F2-problem, there always exist e columns of V12 such that

[V12Π, V13]

[
0
Id

]
=
[

[v1,n−q+π(q+1), . . . , v1,n−q+π(q+e)] , V13
]
∈ Rd×d (7)

is invertible, where the permutation π(·) (realized by Π), selects the above mentioned e columns. Clearly, this selection is
done only among columns satisfying v1,n−q+j 6∈ R(V13), j = 1, . . . , q + e, which simplifies the discrete minimization. The
modified TLS algorithm is then given in Algorithm 1.

Algorithm 1 F2-adaptation of the TLS algorithm
00 Input A, B, m, n, d; compute SVD [B,A] = UΣV T and identify q, e, Vαβ , mt, k, z, V ′i,t
01 If rank([V12, V13]) = d then problem is of first class (F), also called generic problem
02 If rank(V13) = e and rank(V12) = d− e then problem is of class F1

03 Output XOUT = XTLS = −[V22, V23][V12, V13]†, the minimum Frob. and 2-norm TLS solution
04 elseif rank(V13) = e and rank(V12) > d− e then problem is of class F2

05 Find the set of all columns of V12 satisfying v1,n−q+j = V12ej 6∈ R(V13)
06





Select some subset of e of them—let it contains the j1th, j2th, . . ., and jeth columns of V12




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0

.
07 Find a permutation matrix Π so that V12Π = [ . . . , v1,n−q+j1 , v1,n−q+j2 , . . . , v1,n−q+je ]

08 Output XF2-OUT = XTLS = −([V22Π, V23][ 0
Id

])([V12Π, V13][ 0
Id

])−1, some TLS solution
09 elseif rank(V13) < e then problem is of class F3

10 Output XOUT = −[V22, V23][V12, V13]†, the nongeneric-like solution
11 elseif rank([V12, V13]) < d then problem is of second class (S), also called nongeneric problem
12 Find ` (` < k) so that rank([V ′1,`, . . . , V

′
1,z]) = d and rank([V ′1,`+1, . . . , V

′
1,z]) < d

13 Output XOUT = −[V ′2,`, . . . , V
′
2,z][V

′
1,`, . . . , V

′
1,z]
†, the so-called nongeneric solution

To get a TLS solution reasonably close to the minimum norm solution, the selection of e columns in the line 06 needs
to be specified. Here we can employ ideas used originally, e.g., in the proof of Theorem 3.6 in [6], or in Section 3.4 of [3].
The selection needs to maximize the Frobenius norm of the invertible matrix (7) and at the same time keep it enough far from
being singular. Thus we have to focus on columns v1,n−q+j with larger norms and smaller inner products among themselves,
and with the columns of V13. Further study is however out of the scope of this contribution.
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[4] I. Hnětynková, M. Plešinger, and D. M. Sima, SIAM J. Matrix Anal. Appl., 37(3), pp. 861–876 (2016).
[5] C. C. Paige and Z. Strakoš, SIAM J. Matrix Anal. Appl., 27(3), pp. 861–875 (2006).
[6] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem (SIAM Publications, Philadelphia, 1991).
[7] M. Wei, SIAM J. Matrix Anal. Appl., 13(3), pp. 746–763 (1992).
[8] X.-F. Wang, Linear Multilinear Algebra, 65(3), pp. 438–456 (2017).

c© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.gamm-proceedings.com

36



Part II

Inner structure
of matrix
right-hand side
core problems

37



38



3 Selected basic algebraic
structures present in the
set of all matrices

In this chapter we aim to review some basic algebraic structures that are
present in the set of all matrices and introduce corresponding notation. That
would allow us to further introduce some kind of arithmetics based on the
direct sum, which will be useful (in the next Chapter 4) for the description
of the inner structure of linear approximation problem and core problems
specifically.

3.1 Vectors spaces, groups, and
other sets of matrices

First, we briefly remind some of the very basic concepts. We do it in partic-
ular because we need to carefully include the trivial cases — matrices with
no columns or rows; see the discussion below (1.5). Therefore, we start by
denoting

N = {1, 2, 3, . . .} and N0 = N ∪ {0}

the sets of all positive and nonnegative integers, respectively.
In the text we deal in general withm-by-kmatriceswith entries from some

given set S. The set of all such matrices is denoted as usual by Sm×k. In
order to do some reasonable arithmetics with such matrices, S use to be an
underlying set of some algebraic ring, at least. If S is an underlying set of
some algebraic field, let say F, then Fm×k forms the linear vector space over
this field.

In the introductory Part I, we always consider real matrices, so there is
F = R — the field of real numbers (reals for short). However, it is worth to
note here that all the theory there can be straightforwardly reformulated for
complex matrices and vectors, and for complex linear approximation prob-
lems. The same would be true in the rest of the text. More specifically, we
mostly consider R, and possible extensions to complex numbers C are com-
mented; other underlying sets S or algebraic fields F different from R or C
are not appropriate, and thus not considered in this text.
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3.1.1 Vector spaces of empty matrices
Vector spaces of real matrices Rm×k are usually considered such that m, k ∈
N; note that the zero matrix (the neutral element w.r.t. summation in Rm×k)
we denote by 0m,k. As already suggested, it will be useful for us to deal also
with matrices with zero number of rows or columns, i.e., we allow m, k ∈ N0.
In other words, we also consider an infinitely many degenerated (or trivial)
vector spaces, each containing only one neutral element— the empty matrix
— and the zero matrix at the same time,

Rm×0 = {0m,0}, 0m,0 =

  , R0×k = {00,k}, 00,k = [ ]. (3.1)

Among these degenerated spaces

R0×0 = {00,0}, 00,0 = [ ] (3.2)

is particular important.
Note here that we often write the zero matrix simply by 0, i.e., without

specification of its dimensions. We specify them only if it is necessary for
understanding, or if the matrix is empty.

3.1.2 Arithmetics of empty matrices
The standard matrix arithmetics can be straightforwardly extended to the
empty matrices. In particular, forM ∈ Rm×k,

M0k,0 = 0m,0, 00,mM = 00,k, 00,s0s,0 = 00,0, 0m,000,k = 0m,k, (3.3)

where 0m,k ∈ Rm×k is the m-by-k zero matrix.
Furthermore, matrixM ∈ Rm×k trivially cannot be changed neither by con-

catenation with an empty matrix of suitable dimensions

[M, 0m,0] =

[
M
00,k

]
=M =

[
00,k
M

]
= [0m,0,M ] (3.4)

and thus nor by the block-diagonal composition (first and last case) and
block-antidiagonal composition (middle cases),[

M
00,0

]
︸ ︷︷ ︸
diag(M, 00,0)

=

[
M

00,0

]
=M =

[
00,0

M

]
=

[
00,0

M

]
︸ ︷︷ ︸
diag(00,0,M)

. (3.5)

Note that the block-diagonal composition is often called the direct sum of
matrices.
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3.1.3 M : The set of all matrices
The title of this chapter mentions the set of all matrices. By this we refer to
the set

M ≡M (R) ≡
∪

m,k∈N0

Rm×k, (3.6)

i.e., the set of all real matrices, including empty matrices. Similarly M (C),
M (F), and M (S) denote sets of all complex matrices, matrices over field F,
and set S, respectively.

3.1.4 Groups of orthogonal (and unitary) matrices
Further, we will require to work with a special sort of square invertible ma-
trices called the orthogonal matrices; see (1.4). Recall that

P ∈ Rm×m is orthogonal ⇐⇒ P−1 = P T, (3.7)

or, equivalently, PP T = Im = P TP . Just to be sure, here P T denotes the
matrix transposed to P and Im stands for the m-by-m identity matrix. Note
that in the case of complex field (and that is one of changes that we need
to implement when translating Part I to complex numbers) we need to deal
with the so-called unitary matrices,

P ∈ Cm×m is unitary ⇐⇒ P−1 = PH, (3.8)

or, equivalently, PPH = Im = PHP . Here PH = (P )T = (P T) denotes the
complex conjugate transposition (bars denote the complex conjugation).

The sets of all orthogonal and unitary matrices of the given fixed size m,
denoted usually

Om ⊆ Rm×m and Um ⊆ Cm×m,

form together with the matrix multiplication the so-called orthogonal and
unitary groups, respectively. If the size of the orthogonal, or unitary matrix
P is not specified, we write simply P ∈ O, or P ∈ U, respectively.

In the case m = 0, we consider

O0 = U0 = R0×0 = {00,0}.

This might be a bit disturbing to the reader, because the empty matrix 00,0
is the zero of the vector space F0×0, but it plays also the role of the neutral
element within the multiplicative group. But it is perfectly fine because the
identity matrix Im with m = 0, i.e., of order zero, satisfies I0 = 00,0. (Note
this situation is analogous to algebraic rings, where the zero 0 and the unit
1 elements are the same 0 = 1. Such so-called zero-rings contain only one
element.) Now it would be no surprise, that we consider

det(00,0) = 1

for convenience.
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3.2 Direct summation monoid (M ,⊕)
The direct sum of two matrices (or the block-diagonal composition, as al-
ready mentioned) is defined as

M1 ⊕M2 ≡
[
M1 0
0 M2

]
=M ∈ Rm×k, (3.9)

whereMj ∈ Rmj×kj , j = 1, 2,M ∈ Rm×k, and m = m1 +m2, k = k1 + k2.
One can see that the direct sum ⊕ is a binary operation on the set M

satisfying a lot of obvious and useful properties:

(S1) Trivially, the set M is closed w.r.t. ⊕ (which is, in fact, already hidden
in the term operation), i.e.,

⊕ : M 2 −→M .

(S2) The direct sum is associative, i.e.,

∀M1,M2,M3 ∈M , (M1 ⊕M2)⊕M3 =M1 ⊕ (M2 ⊕M3)

that allows us to write simplyM1 ⊕M2 ⊕M3.
(S3) There is a neutral element w.r.t. ⊕ within M (see (3.5)), i.e.,

∃00,0 ∈M , ∀M ∈M , M ⊕ 00,0 =M = 00,0 ⊕M.

(S4) The direct sum is clearly not commutative up to some special cases.
For example if at least one of these cases occurs:

• M1 =M2,
• M1 = 00,0,
• M2 = 00,0,
• M1 = 0m1,k1 andM2 = 0m2,k2,

thenM1 ⊕M2 =M2 ⊕M1.

Consequently, M together with ⊕ form an algebraic structure specified in
the following proposition that we have just proved:

Proposition 1. LetM be the set of all matrices over the real numbers (3.6)
and let ⊕ : M 2 −→M be the direct summation defined onM by (3.9). Then
the ordered pair

(M ,⊕)

forms the structure of non-commutative monoid.
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3.2.1 Direct summation and empty matrices
Let us also mention that the admission of having the matrix with the zero
number of columns or rows enables us to introduce following identities ex-
tending the neutrality property (S3). Having M1 ∈ Rm1×k1 and M2 being an
empty matrix, in particularM2 ≡ 0m2,0 ∈ Rm2×0, the direct sum takes the form

M1 ⊕M2 =M1 ⊕ 0m2,0 =

[
M1

0m2,k1

]
︸ ︷︷ ︸

k1

}m1

}m2
, (3.10)

in the other caseM2 ≡ 00,k2 ∈ R0×k2

M1 ⊕M2 =M1 ⊕ 00,k2 =
[
M1 0m1,k2

]
}m1.︸ ︷︷ ︸

k1

︸ ︷︷ ︸
k2

(3.11)

Similarly it behaves whenM1 is an empty andM2 a general matrix.
Combining the previous two identities togetherwith the associativity (S2),

we see

∀M1 ∈M , (M1 ⊕ 0m2,0)⊕ 00,k2 =M1 ⊕ (0m2,0 ⊕ 00,k2) =M1 ⊕ 0m2,k2 ,

consequently giving

0m2,0 ⊕ 00,k2 = 0m2,k2 = 0m2,0 00,k2 = 00,k2 ⊕ 0m2,0; (3.12)

see also (3.3) for the second and (S4) for the third equality. Finally note that

0m1,0 ⊕ 0m2,0 = 0m1+m2,0 and 00,k1 ⊕ 00,k2 = 00,k1+k2 . (3.13)

3.2.2 Direct sum of subsets ofM

The direct sum can be simply generalized so that it performs on the whole
sets. Suppose M1, M2 ⊆ M are nonempty. Then we can define the direct
sum

M1 ⊕M2 = {M1 ⊕M2 : M1 ∈M1, M2 ∈M2} ⊆M . (3.14)
Apparently,

M ⊕M ⊆M ,

i.e., the set M is closed w.r.t. the direct sum; see (S1). Furthermore, since
the empty matrices are within M , it is easy to show that

M ⊕M = M . (3.15)

It trivially comes out from the fact that

∀M ∈M , ∃M1,M2 ∈M , M =M1 ⊕M2 (3.16)

complemented with the fact that the matrix 00,0 ∈ R0×0 plays the role of the
neutral element w.r.t. ⊕; see property (S3). To show (3.16) we can take
M1 =M ,M2 = 00,0, or vice versa.
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3.3 Orthogonal equivalence &
quotient set M /∼

Consider two matrices of the same dimension M , L ∈ Rm×k ⊂ M . The fol-
lowing definition introduces an equivalence relation on the set M .

Definition 1 (orthogonal equivalence). We say that L is orthogonally equiv-
alent to M , if there exist orthogonal matrices P ∈ Om and S ∈ Ok such that

L = P TMS, (3.17)
shortly L ∼M .

It is easy to verify that this relation really is an equivalence. It clearly satisfies
the following properties:
∀K,L,M ∈M ,

(reflexivity) M = ITMI ∼M,

(symmetry) L = P TMS ∼M ⇐⇒ M = PLST = (P T)TL(ST) ∼ L,

(transitivity) K = P T
1 LS1 ∼ L & L = P T

2 MS2 ∼M =⇒
K = P T

1 (P
T
2 MS2)S1 = (P2P1)

TM(S2S1) ∼M,

since the set of orthogonal matrices of the given order together with matrix
multiplication form a group.

3.3.1 Equivalence classes
Using this equivalence relation, we can establish equivalence classes in a
standard way such that

[M ]∼ = {L ∈M : L ∼M}. (3.18)
Clearly, since the equivalence is defined with the use of a multiplication by
square matrices, ifM ∈ Rm×k, then [M ]∼ ⊆ Rm×k.

Remark 1. Employing the singular value decomposition (SVD), we can ex-
pressM as the product of a diagonal matrix Σ and two orthogonal matrices
U ∈ Om and V ∈ Ok such that

M = UΣV T, i.e., Σ = UTMV. (3.19)
We see that Σ ∼M , and thus we can take Σ as the natural representative of
the class [M ]∼.
In other words, any equivalence class [M ]∼, M ∈ Rm×k ⊂ M , is uniquely

given by the dimensions and singular values ofM , i.e., by the triplet(
m, k,

[
σ1(M), σ2(M), . . . , σmin(m,k)(M)

])
,

where σj(M) denotes the jth largest singular value ofM .
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3.3.2 Classes of empty & zero matrices
Since each of the degenerated spaces always consists of the only (empty)
matrix, the corresponding class also contains the only matrix, i.e.,

[00,0]∼ = {00,0} = R0×0, [0m,0]∼ = {0m,0} = Rm×0, [00,k]∼ = {00,k} = R0×k.

Further, the classes corresponding to nonempty, but zero matrices

[0m,k]∼ =
{
P0m,kS

T = 0m,k : P ∈ Om, S ∈ Ok

}
= {0m,k} ⊆ Rm×k

always contain the only matrix as well.

3.3.3 Quotient set
Consequently,M can be decomposed intomutually disjoint classes of equiv-
alence yielding a quotient set

M /∼ =
{
[M ]∼ : M ∈M

}
. (3.20)

Since the set of singular values of the direct sum is the union of sets
of singular values of individual summands, we can combine both concepts
together. It allows us to modify the binary operation — the direct sum — for
the quotient set; and then form the quotient monoid.

3.4 Quotient monoid (M /∼,⊞)

The binary operation on the quotient set M /∼ dealing with the (representa-
tives of) equivalence classes can be defined as

[M1]∼ ⊞ [M2]∼ = [M1 ⊕M2]∼ . (3.21)

Similarly as before, this operation has a lot of important properties:

(S̃1) Again, the set M /∼ is clearly closed w.r.t. ⊞, i.e.,

⊞ : (M /∼)
2 −→M /∼ .

(S̃2) The operation ⊞ is associative, i.e., ∀[M1]∼, [M2]∼, [M3]∼ ∈M /∼(
[M1]∼ ⊞ [M2]∼

)
⊞ [M3]∼ = [M1 ⊕M2]∼ ⊞ [M3]∼

= [(M1 ⊕M2)⊕M3]∼ = [M1 ⊕ (M2 ⊕M3)]∼

= [M1]∼ ⊞ [M2 ⊕M3]∼ = [M1]∼ ⊞
(
[M2]∼ ⊞ [M3]∼

)
that allows us to write simply [M1]∼ ⊞ [M2]∼ ⊞ [M3]∼.
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(S̃3) There is a neutral element [00,0]∼ within M /∼, i.e.,

∀[M ]∼ ∈M /∼, [M ]∼ ⊞ [00,0]∼ = [M ⊕ 00,0]∼ = [M ]∼,

and similarly from the other side.
(S̃4) Contrary to ⊕, the operation ⊞ is commutative.

To show the commutativity consider first, for the given fixed splitting
n = n1 + n2, the following bijection fn1,n2 on Rn×n

fn1,n2 : G 7−→ fn1,n2(G) =

[
0 In2

In1 0

]
G, f−1

n1,n2
= fn2,n1 .

Clearly, for m = m1 + m2, P ∈ Om if and only if fm1,m2(P ) ∈ Om; and
similarly for k = k1 + k2, S ∈ Ok if and only if fk1,k2(S) ∈ Ok.
Thus, we have ∀[M1]∼, [M2]∼ ∈M /∼

[M1]∼ ⊞ [M2]∼ = [M1 ⊕M2]∼ =

{
P T
[
M1 0
0 M2

]
S : P, S ∈ O

}
=

{
(fm1,m2(P ))

T
[
M1 0
0 M2

]
fk1,k2(S) : P, S ∈ O

}
=

{([
0 Im2

Im1 0

]
P

)T [
M1 0
0 M2

]([
0 Ik2
Ik1 0

]
S

)
: P, S ∈ O

}

=

{
P T
([

0 Im1

Im2 0

] [
M1 0
0 M2

] [
0 Ik2
Ik1 0

])
S : P, S ∈ O

}
=

{
P T
[
M2 0
0 M1

]
S : P, S ∈ O

}
= [M2 ⊕M1]∼ = [M2]∼ ⊞ [M1]∼.

Consequently, M /∼ together with ⊞ form an algebraic structure specified in
the following proposition that we have just proved:

Proposition2. LetM /∼ be the quotient set (3.20) ofM and let⊞ : (M /∼)
2 −→

M /∼ be the direct summation defined onM /∼ by (3.21). Then the ordered
pair

(M /∼,⊞)

forms the structure of commutative monoid.

3.4.1 Remarks on connection of both monoids & notation
The (commutative) monoid (M /∼,⊞) from Proposition 2 can be seen as the
quotient monoid of the (non-commutative) monoid (M ,⊕) from Proposition 1
modulo the orthogonal equivalence ∼, i.e., symbolically

⊞ = ⊕/∼ , (M /∼,⊞) = (M ,⊕)/∼ . (3.22)
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Further, since the structure is associative and commutative, we can sim-
ply write

[M ]∼ =
n

⊞
ℓ=1

[Mℓ]∼

in order to sum up several summands [Mj]∼ ∈M /∼. Finally, we use

[M ]∼ ⊡ n = [M ]∼ ⊞ [M ]∼ ⊞ · · ·⊞ [M ]∼︸ ︷︷ ︸
n times

;

analogous notationM ⊙ n can be used also forM ⊕M ⊕ · · · ⊕M .

3.4.2 Note on further relation between⊕ and⊞
Recall that the binary operation ⊕ can be applied on any two (nonempty)
subsets ofM . The equivalence classes (3.18) are (nonempty) sets, therefore
it can also be applied on them. Since this action is defined entry-wisely, we
get the following relations. Let

[Mj]∼ = {P T
j MjSj : Pj, Sj ∈ O}, j = 1, 2,

then

[M1]∼ ⊕ [M2]∼ =

{[
P T
1 M1S1 0
0 P T

2 M2S2

]
: Pj, Sj ∈ O, j = 1, 2

}
, (3.23)

but
[M1 ⊕M2]∼ =

{
P T
[
M1 0
0 M2

]
S : P, S ∈ O

}
. (3.24)

We see that generally

[M1]∼ ⊕ [M2]∼ ⊆ [M1]∼ ⊞ [M2]∼

and one could ask whether these two sets are the same.

Lemma 1. LetMj ∈ Rmj×kj ⊂M , j = 1, 2. Then

[M1]∼ ⊕ [M2]∼ = [M1]∼ ⊞ [M2]∼

if and only if at least one of the following three assertions is true

(i) m1 = k1 = 0, i.e.,M1 = 00,0 ∈ R0×0;
(ii) m2 = k2 = 0, i.e.,M2 = 00,0 ∈ R0×0;
(iii) M1 = 0m1,k1 andM2 = 0m2,k2 .

Note that the items in previous lemma are not disjoint. For example the
caseM1 =M2 = 00,0 belongs to all of them.

47



Proof. The proof is in one direction trivial: If M1 = 00,0, then [M1]∼ = {00,0},
M1⊕M2 =M2, and thus also [M1]∼⊕ [M2]∼ = [M2]∼; on the other hand [M1]∼⊞
[M2]∼ = [M1 ⊕M2]∼ = [M2]∼. Similarly it works if M2 = 00,0. Finally, if both
matrices are zeros, then M1 ⊕M2 = 0m,k, m = m1 + m2, k = k1 + k2, is also
a zero matrix, and the class [0m,k]∼ contains the only matrix for any m and k;
see Section 3.3.2.

The other direction is a bit more complicated: RecallMj ∈ Rmj×kj , j = 1, 2,
and note that the entries of the first set (3.23) have the form

(P1 ⊕ P2)
T(M1 ⊕M2)(S1 ⊕ S2)

while entries of the other set (3.24) have the form

P T(M1 ⊕M2)S.

We use three different ways of argumentation to prove the other implication
for (in general 16) different nonzero patterns of the vector of dimensions
[m1, k1,m2, k2] ∈ N4

0. For this purpose we denote by

0 the zero entry,
♡ the entry that may be zero as well as nonzero, and
♣ the nonzero entry.

The first way to reach equality of both sets is to guarantee that

∀P ∈ Om, ∃Pj ∈ Omj
, j = 1, 2, P = P1 ⊕ P2,

and at the same time ∀S ∈ Ok, ∃Sj ∈ Okj , j = 1, 2, S = S1 ⊕ S2.

This happens only if m1 = 0 or m2 = 0, and at the same time k1 = 0 or k2 = 0,
yielding four possible combinations:

• m1 = k1 = 0, i.e.,M1 = 00,0 covering patterns [0, 0,♡,♡] and case (i);
• m2 = k2 = 0, i.e.,M2 = 00,0 covering patterns [♡,♡, 0, 0] and case (ii);
• m1 = k2 = 0, i.e.,M1 = 00,k1 andM2 = 0m2,0 covering patterns [0,♡,♡, 0];
• m2 = k1 = 0, i.e.,M1 = 0m1,0 andM2 = 00,k2 covering patterns [♡, 0, 0,♡].

Thus, now we have actually covered in total 9 out of 16 patterns. The first
two combinations cover cases (i) and (ii) of the lemma, respectively, and the
latter two belong to the case (iii).

The second way to reach equality of both sets is to guarantee that both
sets have only one element — the empty matrix. This means that (M1 ⊕
M2) ∈ Rm×k has either no rows (i.e., m = 0) or no columns (i.e., k = 0). Since
m = m1 +m2 and k = k1 + k2, this happen only if m1 = m2 = 0 or k1 = k2 = 0.
In other words:

• m1 = m2 = 0, i.e.,M1 = 00,k1 andM2 = 00,k2 covering patterns [0,♡, 0,♡];
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• k1 = k2 = 0, i.e.,M1 = 0m1,0 andM2 = 0m2,0 covering patterns [♡, 0,♡, 0].

The second way covers 7 patterns but only 2 are new; so we have covered
in total 11 out of 16 patterns now. Since here we play only with empty, i.e.,
zero matrices, all these patterns belong to the case (iii) of the lemma.

For the third way it is important, that we have already exhausted all the
patterns where two or more entries of [m1, k1,m2, k2] are zeros. Thus, only

[♡,♣,♣,♣], [♣,♡,♣,♣], [♣,♣,♡,♣], [♣,♣,♣,♡], where ♣ > 0,

remain to explore (representing actually five remaining patterns). Thus, it is
safe to consider m = m1 +m2 > 0 and k = k1 + k2 > 0. Hence, in (see (3.24))

P T
[
M1 0
0 M2

]
S =

[
X11 X12

X21 X22

]
}m1

}m2︸ ︷︷ ︸
k1

︸ ︷︷ ︸
k2

at least one of the blocks X12 and X21 is nonempty (has at least one row and
at least one column). Recall that orthogonal matrices P and S can represent
permutation of rows and columns. If at least one of the matrices M1 and
M2 contains at least one nonzero entry, there always exist such permutation
matrices P and S that (one of) the nonempty blocksX12 andX21 contain that
nonzero entry. Since the off-diagonal blocks are always zero in (3.23), we
conclude that neitherM1 norM2 can contain nonzero entries. Thus, bothMj

has to be zero matrices, which belong in the case (iii) of the lemma.

3.5 Partial ordering of both sets
--- posets (M ,⪯) and (M /∼,⊑)

The size of matrices, or classes of matrices — more precisely, the dimen-
sion of linear vector space whereto they belong is nondecreasing along with
direct summation. Even more, if we omit the neutral element 00,0 or [00,0]∼,
the dimension is strictly increasing. This allows us to define a very natural
partial ordering on M :

L ⪯M ⇐⇒ ∃Y, Z ∈M , M = Y ⊕ L⊕ Z, (3.25)

and similarly

• L ≺M iff L ⪯M & L ̸=M (i.e., Y ̸= 00,0 or Z ̸= 00,0);

• L ⪰M iffM ⪯ L;

• L ≻M iffM ≺ L;
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etc. Since the other binary operation ⊞ is commutative, the definition of
ordering on M /∼ is even simpler:

[L]∼ ⊑ [M ]∼ ⇐⇒ ∃[Z]∼ ∈M /∼, [M ]∼ = [L]∼ ⊞ [Z]∼, (3.26)
and similarly

• [L]∼ ⊏ [M ]∼ iff [L]∼ ⊑ [M ]∼ & [L]∼ ̸= [M ]∼ (i.e., [Z]∼ ̸= [00,0]∼);
• [L]∼ ⊒ [M ]∼ iff [M ]∼ ⊑ [L]∼;
• [L]∼ ⊐ [M ]∼ iff [M ]∼ ⊏ [L]∼;

etc. Both relations are clearly linked together
L ⪯M =⇒ [L]∼ ⊑ [M ]∼,

the converse of this implication is not true, in general.
It is easy to verify that both relation ‘⪯’ and ‘⊑’ really form the partial or-

dering. In particular ⪯ satisfies the following properties:
∀K,L,M ∈M ,

(reflexivity) M ⪯M,

(weak antisymmetry) L ⪯M &M ⪯ L =⇒ L =M,

(transitivity) K ⪯ L & L ⪯M =⇒ K ⪯M ;

and similarly ⊑ satisfies the following properties:
∀[K]∼, [L]∼, [M ]∼ ∈M /∼,

(reflexivity) [M ]∼ ⊑ [M ]∼,

(weak antisymmetry) [L]∼ ⊑ [M ]∼ & [M ]∼ ⊑ [L]∼ =⇒ [L]∼ = [M ]∼,

(transitivity) [K]∼ ⊑ [L]∼ & [L]∼ ⊑ [M ]∼ =⇒ [K]∼ ⊑ [M ]∼.

Consequently, M and M /∼ together with ⪯ and ⊑ form structures specified
in the following proposition that we have just proved:

Proposition 3. LetM be the set of all matrices over the real numbers (3.6),
letM /∼ be the quotient set (3.20) ofM , modulo the orthogonal equivalence
∼ (3.17), and let⪯ and⊑ be binary relations defined onM andM /∼ by (3.25)
and (3.26), respectively. Then the ordered pairs

(M ,⪯) and (M /∼,⊑)

form partially ordered sets (posets for short).

3.5.1 Remark on connection of both posets
The poset (M /∼,⊑) from Proposition 3 can be seen as the quotient poset of
the poset (M ,⪯) from Proposition 3 modulo the orthogonal equivalence ∼,
i.e., symbolically

⊑=⪯ /∼ , (M /∼,⊑) = (M ,⪯)/∼ . (3.27)
Compare with Section 3.4.1.
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3.5.2 Who precedes whom?
The first relation L ⪯ M simply says that the matrix L forms a block on the
block-diagonal of the block-diagonal matrixM , nothing more, nothing less.

The second relation ⊑ says essentially the same, but up to an orthogonal
transformation. To be more specific, let us consider

L ∈ Rn×t, s ≡ rank(L) ≤ min(n, t),
M ∈ Rm×k, r ≡ rank(M) ≤ min(m, k).

Employing the SVDs of L and M (see also Remark 1) we get: [L]∼ ⊑ [M ]∼ if
and only if

(i) The set of s nonzero singular values of L (including the multiplicities)
form a subset of the set of r nonzero singular values of M (including
the multiplicities).

(ii) Dimensions of null-spaces of L,M , LT, andMT satisfy

dim(N (L)) ≡ t− s ≤ k − r ≡ dim(N (M)),

dim(N (LT)) ≡ n− s ≤ m− r ≡ dim(N (MT)).

3.6 Matrix and quotient pomonoids
--- an analogy to (N, · , | )

Now we are ready to put all the previous observations (see Propositions 1,
2, and 3) together. We formulate the following proposition:

Proposition 4. LetM be the set of all matrices over the real numbers (3.6),
⊕ the binary operation (3.9), and ⪯ the binary relation (3.25) defined onM .
LetM /∼ be the quotient set (3.20) ofM , ⊞ the binary operation (3.21), and
⊑ the binary relation (3.26) defined onM /∼. Then the ordered triplets

(M ,⊕,⪯) and (M /∼,⊞,⊑)

form the structures of non-commutative and commutative, respectively, par-
tially ordered monoid (pomonoids for short).

3.6.1 Remarks on connection of both pomonoids & naturals
The (commutative) pomonoid (M /∼,⊞,⊑) from Proposition 4 can be seen as
the quotient pomonoid of the (non-commutative) pomonoid (M ,⊕,⪯) from
Proposition 4 modulo the orthogonal equivalence ∼, i.e., symbolically

(M /∼,⊞,⊑) = (M ,⊕,⪯)/∼ . (3.28)

Compare with Sections 3.4.1 and 3.5.1.
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The structure of pomonoids is particular interesting, especially in the sec-
ond case, where the binary operation is commutative. An analogous struc-
ture can be found, e.g., in positive integers (natural numbers), where the
pomonoid (N, · , | ) consists of the set of naturals N, their standard multipli-
cation ·, and the ‘to be a divisor’ relation |.

It is easy to see that the similar role as the number one in (N, · , | ), is here
played by the neutral entries of monoids, i.e.,

∀M ∈M , 00,0 ⪯M, ∀[M ]∼ ∈M /∼, [00,0]∼ ⊑ [M ]∼.

Much more interesting question can be (see also Section 4.3):

Which entries play the role of primes?

3.6.2 What are the irreducible entries?
The ‘prime-like’ entries are usually called irreducible in different kinds of
analogies of prime factorizations. The ‘prime-like factorization’ itself is then
called the irreducible representation.

It is easy to see that the irreducible representation of M ∈ Rm×k in M (in
fact in (M ,⊕,⪯)) means to find the maximal number of matricesMℓ ∈ Rmℓ×kℓ,
ℓ = 1, 2, . . . , n with dimensions as small as possible, such that

M = diag(M1,M2, . . . ,Mn) =M1 ⊕M2 ⊕ · · · ⊕Mn.

The descriptive characterization of irreducible objects w.r.t. ⪯ seems to be
superfluously technical in general. Attempts of such characterization usu-
ally end up with programmers-like approaches, or with laconic constructive
assertion: The irreducible object is a matrix, that is not a direct sum of other
two matrices distinct from 00,0. On the other hand, decomposing the matrix
itself is not so important for us.

Much more important is the irreducible representation w.r.t. ⊑. It is in fact
done by the SVD; see Remark 1. Clearly forM ∈ Rm×k, we get

[M ]∼ =

min(m,k)

⊞
ℓ=1

[σℓ(M)]∼

⊞


[01,0]∼ ⊡ (m− k) if m > k
[00,0]∼ if m = k
[00,1]∼ ⊡ (k −m) if m < k

. (3.29)

Note that in case m = k it is even not necessary to apply [00,0]∼ as it is trivial
(similarly as the multiplication by 1 in N). In the other two cases, decompos-
ing the empty matrices

[0t,0]∼ = [01,0]∼ ⊡ t, [00,n]∼ = [00,1]∼ ⊡ n,

brings nothing especially interesting, thus might not be necessarily done.
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4 Extension to tuples of
matrices & matricizations
of tuples

It seems that in the previous chapter we have just reinvented the notation
for the SVD, but in much worse and less transparent way. And that is exactly
what we did. But the reason, why we did it in so detailed way, is that our goal
is to generalize these concepts, the terminology, and notation to tuples of
matrices.

Let us consider the Cartesian product of a bunch of copies of the set M ,
i.e., the Cartesian (or outer) power

M ζ = {(M1,M2, . . . ,Mζ) : Mj ∈ Rmj×kj , j = 1, 2, . . . , ζ}. (4.1)

Entries of such set are ordered ζ-tuples of matrices, ζ ∈ N. These can be
naturally seen as vectors of length ζ over M , or, if ζ = µκ, µ, κ ∈ N, as µ-by-κ
matrices over M . From this point of view M ζ , M µ×κ ⊂M (M ) ≡M (M (R)).

4.1 Tuples as outer powers of
simpler pomonoids

Now we can extend the binary operation ⊕, the partial ordering ⪯, and the
orthogonal equivalence relation∼ toM ζ , and also the other binary operation
⊞ and partial ordering ⊑ to the other Cartesian product (M /∼)

ζ .

4.1.1 The outer power of (M ,⊕,⪯)

Let first
⊕ζ : (M ζ)2 −→M ζ and ⪯ζ on M ζ

be a binary operation and a binary relation defined such that

(L1, . . . , Lζ)⊕ζ (M1, . . . ,Mζ) = (L1 ⊕M1, . . . , Lζ ⊕Mζ)
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and

(L1, . . . , Lζ) ⪯ζ (M1, . . . ,Mζ)

⇐⇒ ∃Yj, Zj ∈M , Mj = Yj ⊕ Lj ⊕ Zj, j = 1, . . . , ζ,

⇐⇒ ∃(Y1, . . . , Yζ), (Z1, . . . , Zζ) ∈M ζ ,

(M1, . . . ,Mζ) = (Y1, . . . , Yζ)⊕ζ (L1, . . . , Lζ)⊕ζ (Z1, . . . , Zζ),

respectively. It is easy to see that all the required properties (the associativ-
ity of ⊕ζ , the existence of neutral entry (00,0, . . . , 00,0) w.r.t. ⊕ζ ; and also the
reflexivity, weak antisymmetry, and transitivity of ⪯ζ) are satisfied. Thus, we
get the following proposition:

Proposition5. LetM ζ be the Cartesian power defined in (4.1),⊕ζ , the binary
operation, and ⪯ζ the binary relation defined on M ζ as above. Then the
ordered triplet

(M ζ ,⊕ζ ,⪯ζ)

forms the structure of non-commutative pomonoid.

4.1.2 The outer power of (M /∼,⊞,⊑)
Similarly we can define a relation ∼ζ on M ζ as follows

(L1, . . . , Lζ) ∼ζ (M1, . . . ,Mζ) ⇐⇒ Lj ∼Mj, j = 1, . . . , ζ

and show that this relation is reflexive, symmetric, and transitive, and thus
it is an equivalence — also called the orthogonal equivalence. Then we can
define the equivalence classes and the quotient set (the set of the classes),[

(M1, . . . ,Mζ)
]
∼ζ

and M ζ/∼ζ ,

respectively. Clearly[
(M1, . . . ,Mζ)

]
∼ζ

=
(
[M1]∼, . . . , [Mζ ]∼

)
and thus M ζ/∼ζ = (M /∼)

ζ .

Further, we extend the binary operation⊞ and the binary relation⊑ component-
wisely to

⊞ζ : ((M /∼)
ζ)2 −→ (M /∼)

ζ and ⊑ζ on (M /∼)
ζ

similarly as in Section 4.1.1. Finally, we get the following proposition:

Proposition 6. Let (M /∼)
ζ be quotient set of M ζ (4.1), ⊞ζ the binary op-

eration, and ⊑ζ the binary relation defined on (M /∼)
ζ as above. Then the

ordered triplet
((M /∼)

ζ ,⊞ζ ,⊑ζ)

forms the structure of commutative pomonoid.
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4.1.3 Remarks on connections among all pomonoids
Since the (non-commutative) pomonoid (M ζ ,⊕ζ ,⪯ζ) from Proposition 5 is
the natural Cartesian power of the (non-commutative) pomonoid (M ,⊕,⪯)
from Proposition 4, we can write symbolically

(M ζ ,⊕ζ ,⪯ζ) = (M ,⊕,⪯)ζ ; (4.2)

see Section 4.1.1.
Similarly the (commutative) pomonoid ((M /∼)

ζ ,⊞ζ ,⊑ζ) from Proposition 6
is the natural Cartesian power of the (commutative) pomonoid (M /∼,⊞,⊑)
from Proposition 4, we can write symbolically

((M /∼)
ζ ,⊞ζ ,⊑ζ) = (M /∼,⊞,⊑)ζ ; (4.3)

see Section 4.1.2. Using the already introduced notation (3.28), we obtain

((M /∼)
ζ ,⊞ζ ,⊑ζ) = ((M ,⊕,⪯)/∼)ζ ; (4.4)

see Section 3.6.1.
Finally, note that the (non-commutative) pomonoid ((M /∼)

ζ ,⊞ζ ,⊑ζ) from
Section 4.1.2 can be seen as the quotient pomonoid of the (commutative)
pomonoid (M ζ ,⊕ζ ,⪯ζ) from Section 4.1.1 modulo the orthogonal equivalence
∼, i.e., symbolically

⊞ζ = ⊕ζ/∼ , ⊑ζ =⪯ζ /∼ , ((M /∼)
ζ ,⊞ζ ,⊑ζ) = (M ζ ,⊕ζ ,⪯ζ)/∼ . (4.5)

Compare with Sections 3.4.1, 3.5.1, and 3.6.1.
Consequently, putting (4.4), (4.5) and (4.2) together yields

((M ,⊕,⪯)/∼)ζ = ((M /∼)
ζ ,⊞ζ ,⊑ζ) = (M ζ ,⊕ζ ,⪯ζ)/∼ = ((M ,⊕,⪯)ζ)/∼ , (4.6)

i.e., a sort of commutativity relation between the quotient (modulo the or-
thogonal equivalence) reduction and the Cartesian power.

4.2 Alignments, matricizations,
& transformations of tuples

As one can see, the straightforward extension to tuples of matrices brings
nothing especially new. All the things (derivations and definitions) are done
component-wisely, independently for each member of the tuple.

Therefore, we first restrict the variability of tuples by some additional con-
ditions — the tuple alignment, i.e., we focus on some subsets of (4.1). Then
we introduce the tuple matricization. Finally, we also restrict the variability
of allowed orthogonal transformations.
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4.2.1 Tuple alignment
To simplify the exposition, we explain these concepts on a particular example
(to do it in full generality is out of the scope of this text). Consider, e.g.,

M 4 =
{
(M1,M2,M3,M4) : Mj ∈ Rmj×kj ⊂M

}
. (4.7)

By tuple alignment (TA) we understand any given set of conditions on di-
mensions mj and kj of the tuple, e.g.,

TA =
{
m1 −m2 = 0 , m1 +m3 −m4 = 0 , k1 + k2 − k3 = 0

}
. (4.8)

These conditions clearly relate the individual members of the tuple — in our
example we see that (among others) the first two matricesM1 andM2 must
have the same number of rows. The set of all tuples satisfying all these
conditions is denoted

M 4
TA ⊆M 4. (4.9)

4.2.2 Tuple matricization
By matricization of a tuple we understand any given mapping from the set
of tuples of matrices (or its subset) back to the set of matrices. This allows
us to deal with tuples as with standard matrices. The alignment of the tu-
ple, moreover, allows us to concatenate individual members of the tuple in
specific ways. Following our example (4.7)–(4.9) we can consider

TM : M 4
TA −→ M (4.10)

that acts, e.g.,

TM
(
(M1,M2,M3,M4)

)
=

[
M2 M1

M3
M4

]
=M ∈ Rm×k, (4.11)

where m = m1 +m3 = m2 +m3 = m4, k = k1 + k2 + k4 = k3 + k4.
It is easy to see that the quadruple (M1,M2,M3,M4) can also be consid-

ered as the partitioning of M . Moreover (since M contains also empty ma-
trices), any matrix M can be partitioned in this way. For our purpose it is,
however, more suitable to choose the way of alignment and matricization,
not the way of partitioning.

Note that the matricization (or partitioning) in this example is ‘incompati-
ble’. For our purpose (the core problem analysis) we need to work only with
‘compatible’matricizations — the individual blocks appear in regular rectan-
gular ‘matrix-like’ grid, e.g.:

[
M1 M2

M3 M4

]
,

 M1

M2

M3

 , [
M2 M1

]
, but also

[
M3 M1

MT
2 0

]
,
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etc. Furthermore, note that without any alignment conditions, i.e., with

TA = ∅, we get M ζ
TA = M ζ

∅ = M ζ .

One of possible matricizations can be then realized by the direct summation

TM
(
(M1, . . . ,Mζ)

)
=M1 ⊕ · · · ⊕Mζ =

 M1

. . .
Mζ

 ,
we call it trivial matricization.

4.2.3 Tuple transformation
By tuple transformation induced by the already given alignment TA and ma-
tricization TM we understand binary relation ∼TT on M ζ

TA defined for

L = (L1, . . . , Lζ), M = (M1, . . . ,Mζ) ∈M ζ
TA

such that

L ∼TT M ⇐⇒
(

L ∼ζ M ∧ TM(L) ∼ TM(M)
)
. (4.12)

This relation is an algebraic equivalence on M ζ
TA.

Let us clarify this on our example (4.7)–(4.11): Recall that

L ∼4 M ⇐⇒ L = g(M) =
(
P T
1 M1S1, P

T
2 M2S2, P

T
3 M3S3, P

T
4 M4S4

)
,

where
Pj ∈ Omj

, Sj ∈ Okj , j = 1, 2, 3, 4,

and mappings g (orthogonal transformations) given by these eight matrices
represent elements of the group

G =
(
Om1 ×Ok1

)
×
(
Om2 ×Ok2

)
×
(
Om3 ×Ok3

)
×
(
Om4 ×Ok4

)
.

Replacing this group by any of its subgroup P causes the modification of the
equivalence relation (formally from∼4 to, let say∼P), but it stays an algebraic
equivalence, since the subgroup is still a group; see the proof in Section
3.3). (Note that in general this replacement also causes increasing number
of classes, and decreasing number of elements within a class.)

The other part of the definition of the newly introduced relation (4.12)
says

TM(L) = TM(g(M)) ∼ TM(M),
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i.e., the matricizations of the original and transformed tuple are orthogonally
equivalent. The matricization, therefore, dictates the structure of the new
equivalence[

L2 L1

L3
L4

]
=

[
P T
1 M2S2 P T

1 M1S1

P T
3 M3(S2 ⊕ S1)

(P1 ⊕ P3)
TM4S4

]

=

[
P T
1 0
0 P T

3

] [
M2 M1

M3
M4

] S2 0 0
0 S1 0
0 0 S4

 . (4.13)
We immediately see that some of the orthogonal groupsO··· must be replaced
in the product G by their proper subgroups:

m1 +m3 = m4 ∈ TA =⇒ Om4 is replaced by Om1 ×Om3 ,

k1 + k2 = k3 ∈ TA =⇒ Ok3 is replaced by Ok1 ×Ok2 .

Moreover, some of the orthogonal groups O··· that appear more than once in
G represent in fact the same instance of the group, i.e., the corresponding
orthogonal matrices appear in more than one products:

m1 = m2 ∈ TA =⇒ P2 is replaced by P1,

m1 +m3 = m4 ∈ TA =⇒ P4 is replaced by P1 ⊕ P3,

k1 + k2 = k3 ∈ TA =⇒ S3 is replaced by S1 ⊕ S2.

Any of these replacements reduce G to some of its proper subgroup. We
denote the remaining subgroup symbolically

TT = TT(TA,TM); (4.14)

in our example, this subgroup is isomorphic to

P =
(
Om1 ×Om3

)
×
(
Ok1 ×Ok2 ×Ok4

)
.

Since (4.14) is the subgroup of G, the binary relation ∼TT represents an alge-
braic equivalence on M ζ

TA.

4.3 Classes and pomonoids of
aligned tuples

At the end of this chapter, we just briefly mention how the general concepts
work in the context of aligned tuples — we will follow our example (4.7)–
(4.14). For L and M ∈M 4

TA:

• The equivalence class has the form

[M]∼TT =
{(
P T
1 M1S1, P

T
1 M2S2, P

T
3 M3(S2 ⊕ S1), (P1 ⊕ P3)

TM4S4

)
:

P1 ∈ Om1 , P3 ∈ Om3 , S1 ∈ Ok1 , S2 ∈ Ok2 , S4 ∈ Ok4

}
.
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• The direct sum of two aligned tuples results again in an aligned tuple

TM(L⊕4 M) =

[
L2 ⊕M2 L1 ⊕M1

L3 ⊕M3
L4 ⊕M4

]
.

Clearly if, e.g., L1 and L2 have the same number of rows, M1 and M2

have the same number of rows, then also L1⊕M1 and L2⊕M2 have the
same number of rows, etc.

• The ordering works fully the same as for general tuples; using the pre-
vious item, we see that, e.g., M ⪯4 (L⊕4 M) and L ⪯4 (L⊕4 M).

Now we are able to build up pomonoids

(M ζ
TA,⊕

ζ ,⪯ζ) and (M ζ
TA/∼TT ,⊞ζ ,⊑ζ).

The second one can again be seen as the quotient pomonoid of the first one,
modulo the modified orthogonal equivalence ∼TT.

The key question is:

Which entries are irreducible (prime-like) entries in these pomonoids?

especially in the second one. This question is very general, seems to be very
difficult to answer, and definitely is out of the scope of this text. In the next
chapter we focus on the simplest case of aligned tuples — the row-aligned
pairs of aligned matrices.
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5 Closer look at
row-aligned pairs of
matrices

From this moment on, we focus on the simplest nontrivial case of aligned
tuple— the aligned pair. Since this work is motivated by linear approximation
problems AX ≈ B (1.6), we slightly modify our notation: instead of M1 and
M2 we will use A and B, respectively, in particular

M 2 =
{
(A,B) : A ∈ RmA×n, B ∈ RmB×d

}
.

Both matrices must have (in accordance to our problem, and without loss of
generality) the same number of rows m = mA = mB, i.e.,

TA = {mA −mB = 0} . (5.1)

The matricization then simply concatenates both matrices — we choose
(again in accordance to our convenience, and without loss of generality) the
‘reverse’ order

TM
(
(A,B)

)
=
[
B A

]
∈ Rm×k, k = d+ n. (5.2)

The tuple transformations (actually pair transformations) induced by this
alignment and matricization take the form

TT :
[
B A

]
∼ P T [ B A

] [ R 0
0 Q

]
=
[
P TBR P TAQ

]
, (5.3)

where (P,Q,R) ∈ Om ×On ×Od; recall Section 1.2.

5.1 GP: The set of all g--eneral
p--roblems

We are studying general linear approximation problems of the form AX ≈ B
and we are solving them by orthogonally invariant minimization (the TLS
method in particular). Thismeans thatwe are interested exactly in the aligned
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ordered pairs up to the orthogonal transformation. Thus, the set of such
problems fits exactly to the set

GP ≡M 2
TA/∼TT , (5.4)

where TA is given by (5.1) and TT by (5.3)

5.1.1 Simplification of notation for general problems
Because the length of tuple, its alignment, matricization, and thus also trans-
formations are fixed since this moment, we simplify the notation a bit in order
to make the text more transparent. In particular we will :

• refer to the classes of orthogonally equivalent pairs directly by their
representatives,

• omit the superscript 2 in direct summation or ordering signs, and
• omit the subscript TT in equivalence sign,

i.e., for example[
(Aα, Bα)

]
∼TT
⊑2
[
(A,B)

]
∼TT

=
[
(Aα, Bα)

]
∼TT

⊞2
[
(Aβ, Bβ)

]
∼TT

will be simply written as

(Aα, Bα) ⊑ (A,B) ∼ (Aα, Bα)⊞ (Aβ, Bβ).

5.1.2 Composition of general problems
The most important manipulation with problems for us is the composition of
problems realized by the direct summation

⊞ : GP2 −→ GP. (5.5)

Note that we will also use this binary operation sign in a less rigorous way.
Let

AjXj ≈ Bj, Aj ∈ Rmj×nj , Xj ∈ Rnj×dj , Bj ∈ Rmj×dj ,

be two linear approximation problems, i.e., (Aj, Bj) ∈ GP, j = α, β. Except for
the standard usage

(Aα, Bα)⊞ (Aβ, Bβ) =

([
Aα 0
0 Aβ

]
,

[
Bα 0
0 Bβ

])
, (5.6)

we also use it directly for matricizations (which is a bit conflicting with some
of the previous notation, but — as we believe — understandable), i.e.,[

Bα Aα

]
⊞
[
Bβ Aβ

]
=

[
Bα 0 Aα 0
0 Bβ 0 Aβ

]
. (5.7)
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Occasionally we use it also for the whole approximation problems{
AαXα ≈ Bα

}
⊞
{
AβXβ ≈ Bβ

}
=

{[
Aα 0
0 Aβ

]
X ≈

[
Bα 0
0 Bβ

]}
. (5.8)

Note that X does not have to be equal to the direct sum of Xα and Xβ in
general; see [4, Section 5.2, Example 5.4]

5.1.3 Note on composition of degenerated problems
Recall that the set of all matrices contain also empty matrices (i.e., with zero
number of rows or columns). Problem that consists of at least one empty
matrix is called degenerated. Now we briefly look what happens when we
are composing problems that may be degenerated. Two most interesting
cases are:

• If nβ = 0, i.e., Aβ = 0mj ,0, then[
Bα Aα

]
⊞
[
Bβ Aβ

]
=

[
Bα 0 Aα

0 Bβ 0

]
∈ R(mα+mβ)×((dα+dβ)+nα).

• If dβ = 0, i.e., Bβ = 0mj ,0, then[
Bα Aα

]
⊞
[
Bβ Aβ

]
=

[
Bα Aα 0
0 0 Aβ

]
∈ R(mα+mβ)×(dα+(nα+nβ)).

The full list of compositions regarding degenerated problems can be found
in Table 5.1 (page 67).

5.2 CP: The set of all c--ore
p--roblems

By core problem we understand any linear approximation problem AX ≈ B
i.e., (A,B) ∈ GP satisfying conditions

∗(CP1) The matrix A is of full column rank.
∗(CP2) The matrix B ∈ Rm×d is of full column rank.
∗(CP3) Matrices UT

i B are of full row rank, where columns of Ui represent ba-
sis of: either the left singular subspace of A corresponding to the ith
largest singular value, for i = 1, . . . , ξ; or the space N (AT), for i = ξ + 1.

We denote the set of all core problems CP. Clearly

CP ⊊ GP (5.9)
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is a proper subset of the set of all general problems; i.e., there are linear
approximation problems that are not core problems.

Note that from (CP1)–(CP3) other properties of core problems can be
derived, particularly useful will be:

(CP4) The matrix [B,A] is of full row rank.
(CP6) Multiplicities of singular values of the matrix A are bounded by rank(B).
See [6], [7], or [11, Appendix A].

5.2.1 Core problem reduction
The core problem theory (see in particular [20], [6]) says, that for each linear
approximation problem

AX ≈ B, A ∈ Rm×n, X ∈ Rn×d, B ∈ Rm×d,

there always exist orthogonal matrices P ∈ Om, Q ∈ On, and R ∈ Od, such
that

P T [ B A
] [ R 0

0 Q

]
=

[
B1 0 A11 0
0 0 0 A22

]
, (5.10)

i.e., [
A11 0
0 A22

] [
X11 X12

X21 X22

]
≈
[
B1 0
0 0

]
i.e.,

A11X11 ≈ B1, A11X12 ≈ 0, A22X21 ≈ 0, A22X22 ≈ 0,

where
A11X11 ≈ B1, A11 ∈ Rm×n, X11 ∈ Rn×d, B1 ∈ Rm×d,

is the core problem. Thus, for any (A,B) ∈ GP[
B A

]
∼
[
B1 0 A11 0
0 0 0 A22

]
.

We use the notation suitable for matrix right-hand side case (see [6]) here,
but the vector right-hand side case Ax ≈ b (see [20]) represents only a spe-
cial case with X = [x] ∈ Rn×1, B = [b] ∈ Rm×1,[

B A
]
=
[
b A

]
∼
[
b1 A11 0
0 0 A22

]
=

[
B1 0m,0 A11 0
0 0m−m,0 0 A22

]
,

and B1 = [b1] ∈ Rm×1. The core problem is given uniquely up to an orthogonal
transformation, i.e., up to the equivalence ∼, i.e.,

∀ (A,B) ∈ GP : ∃! (A11, B1) ∈ CP;
see again [20], [6]. We call this mapping the core problem reduction

CPR : GP −→ CP, (5.11)
and symbolically write as

CPR
( [

B A
] )

=
[
B1 A11

]
or

[
B A

] CPR−−−→
[
B1 A11

]
.
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5.2.2 Note on degenerated core problems
Since GP contains also the degenerated problems, it is necessary to look
how the core problem reduction performs on them. In most cases of degen-
erated problems, one or a combination of conditions (CP1), (CP2), and (CP4)
(on full column or row ranks of matrices A11, B1, and [B1, A11]), and once also
(CP6) (on multiplicities of singular values of A11) imply that CPR results in the
fully degenerated (i.e., with no rows and no columns in the system matrix as
well as in the right-hand side) core problem[

B1 A11

]
=
[
00,0 00,0

]
∈ CP.

The list of all degenerated problems and results of CPRs (including the key
properties (CPℓ) that clarifies the result) can be found in Table 5.2 (page 67).

However, there is one degenerated problem that is not reduced to the
fully degenerated one by the CPR, in general. Let

A ∈ Rm×0, B ∈ Rm×d, r = rank(B).

Consider SVDs of both matrices, the first one is rather formal

A = UAΣAV
T
A , UA = Im ∈ Om, ΣA = 0m,0 ∈ Rm×0, VA = 00,0 ∈ O0,

the other is

B = UBΣBV
T
B , UB ∈ Om, ΣB =

[
B1 0r,d−r

0m−r,r 0m−r,d−r

]
∈ Rm×d, VB ∈ Od,

and the diagonal matrix with (nonzero) singular values

B1 ∈ Rr×r is square invertible.

Then for P = UB, Q = VA = 00,0, and R = VB we get

[
B A

]
∼ P T [ B A

] [ R 0
0 Q

]
= UT

B

[
B 0m,0

] [ VB 0
0 00,0

]
=
[
ΣB 0m,0

]
=

[
B1 0r,d−r 0r,0

0m−r,r 0m−r,d−r 0m−r,0

]
=

[
B1 0r,d−r A11 0r,0

0m−r,r 0m−r,d−r 0m−r,0 A22

]
,

where A11 = 0r,0 ∈ Rr×0 and A22 = 0m−r,0 ∈ R(m−r)×0.
Obviously, this transformation (according to the structure of the result)

formally resembles the core problem revealing transformation. It remains to
verify, whether [B1, A11] satisfies the properties (CP1)–(CP3):

• Matrix A11 is the empty (zero) matrix, it has rank(A11) = 0 and zero
columns, i.e., it is of full column rank: (CP1) holds.

• Matrix B1 is square invertible, i.e., it is of full column rank: (CP2) holds.
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• The SVD of A11 = Ir 0r,0 0
T
0,0 is analogous to the SVD of A; A11 has no

singular values, the whole Rr is the null-space of AT
11 and columns of

U1 = Ir represents its basis. Since B1 is invertible, then UT
1B1 = IrB1 =

B1 is of full row rank: (CP3) holds.

Consequently, any square invertible matrixB1 of order r together with empty
matrix A11 = 0r,0 represent a core problem. Since square invertible matrix is
characterized by nonzero determinant, we may define the whole set{

(A11, B1) ∈ GP : A11 = 0r,0, B1 ∈ Rr×r, det(B1) ̸= 0, r ∈ N0

}
⊊ CP (5.12)

of degenerated core problems. Since det(00,0) = 1, the set contains also the
fully degenerated core problem for r = 0. Note that nontrivial degenerated
core problems are also observed in paper [4, Theorem 3.2].

5.2.3 Composition andcoreproblem reduction—theyprop-
erties and interplay

Now we have two important tools to work with approximation problems: the
composition ⊞ (5.5) and the core problem reduction CPR (5.11). It would be
useful to look on its interplay.

First of all, the composition is defined on the set of all problems GP, but
it can be applied also on its proper subset of core problems CP. It has been
shown (see [4, Theorems 3.1 and 3.2]) that

⊞ : CP2 −→ CP. (5.13)

In other words the set of core problems is closed w.r.t. the composition.
More specifically

(A11,α, B1,α), (A11,β, B1,β) ∈ CP ⇐⇒ (A11,α, B1,α)⊞ (A11,β, B1,β) ∈ CP;

naturally, including the degenerated core problems.
Secondly, the core problem reduction is also defined on the whole set of

all problems GP and can be restricted to the proper subset of core problems
CP. From the properties of core problems and the construction of the re-
duction (see [20], [6]) however follows, that the core problem reduction of
a problem which already is a core problem, is trivial. In other words

CPR : CP −→ CP, (5.14)

is the identity mapping

∀ (A11, B1) ∈ CP : CPR
(
(A11, B1)

)
= (A11, B1). (5.15)

From this point of view:

The core problem reduction is an orthogonal projection from GP onto CP
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Table 5.1: All possible shapes of [Bα, Aα] ⊞ [Bβ, Aβ] according to different
dimensions of Aj, Bj, j = α, β, being (non)zero.

zero dims. no mα = 0 mβ = 0 mα = mβ = 0

no
[
Bα 0 Aα 0
0 Bβ 0 Aβ

] [
0 Bβ 0 Aβ

] [
Bα 0 Aα 0

] [
00,dα 00,dβ 00,nα 00,nβ

]
nα = 0

[
Bα 0 0
0 Bβ Aβ

] [
0 Bβ Aβ

] [
Bα 0 0

] [
00,dα 00,dβ 00,nβ

]
nβ = 0

[
Bα 0 Aα

0 Bβ 0

] [
0 Bβ 0

] [
Bα 0 Aα

] [
00,dα 00,dβ 00,nα

]
dα = 0

[
0 Aα 0
Bβ 0 Aβ

] [
Bβ 0 Aβ

] [
0 Aα 0

] [
00,dβ 00,nα 00,nβ

]
dβ = 0

[
Bα Aα 0
0 0 Aβ

] [
0 0 Aβ

] [
Bα Aα 0

] [
00,dα 00,nα 00,nβ

]
nα = nβ = 0

[
Bα 0
0 Bβ

] [
0 Bβ

] [
Bα 0

] [
00,dα 00,dβ

]
dα = dβ = 0

[
Aα 0
0 Aβ

] [
0 Aβ

] [
Aα 0

] [
00,nα 00,nβ

]
nα = dα = 0

[
0 0
Bβ Aβ

] [
Bβ Aβ

] [
0 0

] [
00,dβ 00,nβ

]
nβ = dβ = 0

[
Bα Aα

0 0

] [
0 0

] [
Bα Aα

] [
00,dα 00,nα

]
nα = dβ = 0

[
Bα 0
0 Aβ

] [
0 Aβ

] [
Bα 0

] [
00,dα 00,nβ

]
nβ = dα = 0

[
0 Aα

Bβ 0

] [
Bβ 0

] [
0 Aα

] [
00,dβ 00,nα

]
nα = nβ

= dα = 0

[
0
Bβ

]
Bβ 0mα,dβ 00,dβ

nα = nβ

= dβ = 0

[
Bα

0

]
0mβ ,dα Bα 00,dα

nα = dα
= dβ = 0

[
0
Aβ

]
Aβ 0mα,nβ

00,nβ

nβ = dα
= dβ = 0

[
Aα

0

]
0mβ ,nα Aα 00,nα

nα = nβ = dα
= dβ = 0

[
0mα,0

0mβ ,0

]
0mβ ,0 0mα,0 00,0

Table 5.2: All possible shapes of [B,A] and CPR([B,A]) = [B1, A11] accord-
ing to different dimensions of A and B being (non)zero. Below most of the
reductions we mention the key property (CPℓ) to get the result.

zero dims. no m = 0

no
[
B A

] CPR−−−→
[
B1 A11

] [
00,d 00,n

] CPR−−−→
[
00,0 00,0

]
(CP1 & 2)

n = 0
[
B 0m,0

] CPR−−−→
[
B1 0m,0

] [
00,d 00,0

] CPR−−−→
[
00,0 00,0

]
(CP2)

d = 0
[
0m,0 A

] CPR−−−→
[
00,0 00,0

] [
00,0 00,n

] CPR−−−→
[
00,0 00,0

]
(CP6) (CP1)

n = d = 0
[
0m,0 0m,0

] CPR−−−→
[
00,0 00,0

] [
00,0 00,0

] CPR−−−→
[
00,0 00,0

]
(CP4) trivial
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A real interplay of both tools can be obtained, when we start combining
them, i.e., when we consider a core problem reduction of a problem compo-
sition. We formulate it via a commutative diagram in the following theorem.

Theorem1. Let (Aα, Bα) and (Aβ, Bβ) be two general problems fromGP. Then

(Aα, Bα)
CPR−−−→ (A11,α, B1,α)

↓ ↓
(Aα, Bα)⊞ (Aβ, Bβ)

CPR−−−→ (A11,α, B1,α)⊞ (A11,β, B1,β)
↑ ↑

(Aβ, Bβ)
CPR−−−→ (A11,β, B1,β)

(5.16)

i.e., composition of two problems and core problem reductions commute.

Note that the assertion of the previous theorem can also be rewritten as

CPR
( [

Bα Aα

]
⊞
[
Bβ Aβ

] )
= CPR

( [
Bα Aα

] )
⊞ CPR

( [
Bβ Aβ

] )
.

Proof. The outer way (first reduce, then compose): The core problem reduc-
tion of general problems (Aj, Bj) results in (A11,j, B1,j) satisfying (CP1)–(CP3),
j = α, β, i.e., there exist orthogonal matrices Pj, Qj, and Rj such that[

Bj Aj

]
∼ P T

j

[
Bj Aj

] [ Rj 0
0 Qj

]
=

[
B1,j 0 A11,j 0
0 0 0 A22,j

]
.

Composition of both core problems then yields[
B1,α A11,α

]
⊞
[
B1,β A11,β

]
=

[
B1,α 0 A11,α 0
0 B1,β 0 A11,β

]
,

which is a core problem by (5.14).
The inner way (first compose, then reduce): Composition of (Aj, Bj) yields[

Bα Aα

]
⊞
[
Bβ Aβ

]
=

[
Bα 0 Aα 0
0 Bβ 0 Aβ

]
. (5.17)

This composition is orthogonally equivalent to

[
Pα 0
0 Pβ

]T [
Bα 0 Aα 0
0 Bβ 0 Aβ

]
Rα 0 0 0
0 Rβ 0 0
0 0 Qα 0
0 0 0 Qβ


=

[
P T
αBαRα 0 P T

αAαQα 0
0 P T

βBβRβ 0 P T
βAβQβ

]

=


[
B1,α 0
0 0

]
0

[
A11,α 0
0 A22,α

]
0

0
[
B1,β 0
0 0

]
0

[
A11,β 0
0 A22,β

]

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=


B1,α 0 0 0 A11,α 0 0 0
0 0 0 0 0 A22,α 0 0
0 0 B1,β 0 0 0 A11,β 0
0 0 0 0 0 0 0 A22,β

 . (5.18)

Consider a permutation matrix of the following form and recall its action

Π =


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

 , Π


♣
♡
♠
♢

 =


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I



♣
♡
♠
♢

 =


♣
♠
♡
♢

 ,
where identities in Π are of given suitable dimensions. Note that Π and ΠT

have the same block structure (and thus also same structure of action). Fur-
ther note that matrix Π is orthogonal so ΠΠT = ΠTΠ = I.

By employing three of such matrices ΠP , ΠQ, and ΠR, we get a problem
orthogonally equivalent to (5.18) while permuting rows and columns of (5.18)
as follows

∼ ΠT
P


B1,α 0 0 0 A11,α 0 0 0
0 0 0 0 0 A22,α 0 0
0 0 B1,β 0 0 0 A11,β 0
0 0 0 0 0 0 0 A22,β

[ ΠR 0
0 ΠQ

]

=


B1,α 0 0 0 A11,α 0 0 0
0 B1,β 0 0 0 A11,β 0 0
0 0 0 0 0 0 A22,α 0
0 0 0 0 0 0 0 A22,β



=


[
B1,α 0
0 B1,β

]
0

[
A11,α 0
0 A11,β

]
0

0 0 0
[
A22,α 0
0 A22,β

]


(5.19)

Consequently, the composition (5.17) is orthogonally equivalent to the last
problem in (5.19), which has the structure of (5.10). Thus,[

B1,α 0 A11,α 0
0 B1,β 0 A11,β

]
could potentially be a core problem if it satisfies (CP1)–(CP3). Andwe already
know it does as it is the same problem that we get by the outer way.
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5.3 De-composing (core) problem
into irreducible
representation

Now we are ready to start to talk about our ultimate goal — in fact reversing
the process of composing problems, i.e., to decompose the given problem.
We want to decompose it as much as possible, i.e., into parts that are no
further decomposable, or in other words, that are irreducible, or ‘prime-like’
entries in the pomonoid GP.

Note that while composing, dimensions of the resulting problem are sums
of respective dimensions of individual subproblems. Thus, having a given
problem its dimensions cannot decrease by its composition with another one
— but some of them, even all of them may stay the same, if we compose our
problem with the fully degenerated one (00,0, 00,0). This fully degenerated
problem w.r.t. composition plays similar role as number one w.r.t. multipli-
cation — it is the neutral entry.

While reversing the composition we, therefore, ignore the (always avail-
able) possibility of decomposing given the problem to itself and (00,0, 00,0)
(similarly as we ignore the multiplication by one in the prime decomposition).
In other words, we consider only nontrivial decompositions, i.e., on the set

GP \
{
(00,0, 00,0)

}
.

Let us introduce for (A,B) ∈ GP, A ∈ Rm×n, B ∈ Rm×d, quantity

D : GP −→ N0, D
(
(A,B)

)
= m+ n+ d, (5.20)

which moreover satisfies

D
(
(A,B)

)
= 0 ⇐⇒ (A,B) = (00,0, 00,0).

Thus, D is positive on GP \ {(00,0, 00,0)}. Consequently, nontrivial decompo-
sition of

(A,B) −→ (Aα, Bα)⊞ (Aβ, Bβ),

whereAj ∈ Rmj×nj ,Bj ∈ Rmj×dj , j = α, β, is always followed by strict decrease
of quantity D, i.e.,

D
(
(A,B)

)
> D

(
(Aj, Bj)

)
, j = α, β.

Therefore, any sequence of decompositions is finite, so it ends with prob-
lems that are not further decomposable, i.e., they are our irreducible entries.
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5.3.1 Step I: Revealing core problem [B1, A11] as decomposi-
tion

Comparing the result of composition of two problems (5.7),[
Bα Aα

]
⊞
[
Bβ Aβ

]
=

[
Bα 0 Aα 0

0 Bβ 0 Aβ

]
.

with the core problem revealing transformation (5.10),[
B A

]
∼ P T [ B A

] [ R 0
0 Q

]
=

[
B1 0 A11 0

0 0 0 A22

]
,

we immediately see that revealing the core problem essentially does a de-
composition [

B A
]
∼

[
B1 A11

]︸ ︷︷ ︸
CPR

( [
B A

] )⊞
[
0m−m,d−d A22

]︸ ︷︷ ︸
CPC

( [
B A

] ) . (5.21)

We cal the other problem the core problem complement (CPC for short).
Note that in the standard single right-hand side case (i.e., with nonzero b),
d = d = 1 and the complement is degenerated with empty right-hand side.

5.3.2 Step II:Noteondecompositionof thecoreproblemcom-
plement [0m−m,d−d, A22]

The decomposition of the core problem complement (A22, B2) is rather trivial,
because it has zero right-hand sideB2 = 0m−m,d−d. Recall thatA22 ∈ Rm−m,n−n,
and denote for simplicity µ ≡ m−m, ν ≡ n− n, δ ≡ d− d.

The complement can always be decomposed into two degenerated prob-
lems (see (3.11)),

CPC
( [

B A
] )

=
[
0µ,δ A22

]
∼
[
00,δ 00,0

]
⊞
[
0µ,0 A22

]
. (5.22)

The first one has no rows, the second has empty right-hand side with no
columns. (If d = d, this decomposition is not necessary, because the first
problem is fully degenerated.)

The subproblem [0µ,0, A22] can further be decomposed (see (3.29)) as fol-
lows[

0µ,0 A22

]
∼

min(µ,ν)

⊞
ℓ=1

[
01,0 σℓ(A22)

]⊞


[
0µ−ν,0 0µ−ν,0

]
if µ > ν[

00,0 00,0
]

if µ = ν[
00,0 00,ν−µ

]
if µ < ν

,

(5.23)
where σℓ(A22) denotes the ℓth largest singular value of A22 including multi-
plicities and zero singular values. (If µ = ν, the last problem is again fully
degenerated and can be ignored.)
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5.3.3 Step III: Extracting degenerated component [B1,β, 0m,0]
from the core problem

Recall that the core problem might be composed while some of its compo-
nents might be degenerated (see(5.12) or [4, Theorem 3.2]), i.e.,

CPR
( [

B A
] )

=
[
B1 A11

]
∼
[
B1,α A11,α

]
⊞
[
B1,β 0mβ ,0

]
. (5.24)

Equivalently, there exist orthogonal matrices P1, Q1, R1, such that

P T
1

[
B1 A11

] [ R1 0
0 Q1

]
=

[
B1,α 0 A11,α 0mα,0

0 B1,β 0 0mβ ,0

]
=

[
B1,α 0 A11,α

0 B1,β 0

]
.

(5.25)

Dimensions of matrices are A11 ∈ Rm×n, B1 ∈ Rm×d, A11,α ∈ Rmα×nα (n = nα),
B1 ∈ Rmα×dα, and B1,β is square invertible matrix of order mβ. (If mβ = 0, then
B1,β = 00,0 and the β-component is fully degenerated.)

To extract the degenerated subproblem we employ the SVD of B1 =
UΣV T. It can be written in the form of the direct sum of SVDs of B1,j =
UjΣjV

T
j , j = α, β, as follows

B1 = P1

[
B1,α 0
0 B1,β

]
RT

1 =

(
P1

[
Uα 0
0 Uβ

])
︸ ︷︷ ︸

U

[
Σα 0
0 Σβ

]
︸ ︷︷ ︸

Σ

(
R1

[
Uα 0
0 Uβ

])
︸ ︷︷ ︸

V

T

.

From the property (CP2) of core problems we know that Σ, Σα, and Σβ are of
full column rank; moreover, since B1,β is square invertible, Σβ is, too. Then

UTA11 =

(
P1

[
Uα 0
0 Uβ

])T(
P1

[
A11,α

0

]
QT

1

)
=

[
UT
αA11,α

0

]
QT

1 .

We see that this matrix contains information only form the α-component;
the degenerated subproblem, i.e., the β-component is completely dampen
in the result. More precisely, the result still depends on the orthogonal matrix
Q1 (one of the matrices from the block-partitioning revealing transformation
(5.25)), however, it only mixes columns of the result together, i.e., the 2-
norms of individual rows of the result are independent on Q1. Consequently,

UT [ B1 A11

] [ V 0
0 In

]
=

[
Σα 0 UT

αA11,αQ
T
1

0 Σβ 0

]
.

We see that the singular values of B1,β, the right-hand side of the degen-
erated subproblem correspond to the zero rows in matrix UTA11. But we do
not have any a-priori information about which singular value of B1 belongs
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to the α- and which to the β-component, i.e., we do not have the SVD in this
particular form of the direct sum.

Thus, consider (rather general) SVD of B1 in the standard form, i.e.,

B1 = UΣV T, Σ =

[
diag(σ1(B1), . . . , σd(B1))

0m−d,d

]
, σ1(B1) ≥ · · · ≥ σd(B1) > 0;

recall that B1 is of full column rank. Then

UT [ B1 A11

] [ V 0
0 In

]
=
[
Σ UTA11

]
.

Let ℓ ∈ {1, 2, . . . , d} and let σℓ(B1) be such singular value for which

eTℓ (U
TA11) = uTℓA11 = 01,n, (5.26)

i.e., the ℓth row of UTA11 is zero; here eℓ denotes the ℓth Euclidean vector and
uℓ = Ueℓ. Consider the permutation matrix

Πs,ℓ =

 Iℓ−1 0 0
0 0 1
0 Is−ℓ 0

 ∈ Rs×s

that moves the last entry to the ℓth position when applied from the left on a
vector of length s (i.e., ΠT

s,ℓ moves the ℓth entry to the last position). Then

ΠT
m,ℓΣΠd,ℓ =

 diag(σ1(B1), . . . , σℓ−1(B1), σℓ+1(B1), . . . , σd(B1))
0m−d,d−1

0d−1,1

0m−d,1

01,d−1 σℓ(B1)

 ,
and clearly

ΠT
m,ℓ(U

TA11) =



uT1A11

...
uTℓ−1A11

uTℓ+1A11

...
uTm−1A11

uTℓA11


=



uT1A11

...
uTℓ−1A11

uTℓ+1A11

...
uTm−1A11

01,n


.

Finally,(
UΠm,ℓ

)T [
B1 A11

] [ VΠd,ℓ 0
0 In

]
=
[
ΠT

m,ℓΣΠd,ℓ ΠT
m,ℓ(U

TA11)
]

has the structure of the form (5.25) (see the boxes above), with orthogonal
matrices P1 = UΠm,ℓ, Q1 = In, R1 = VΠd,ℓ. Clearly, we can do the same job
for all ℓ (1 ≤ ℓ ≤ d), for which (5.26) holds, but this is not enough.
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Let the ℓth singular value be of multiplicity t, i.e.,

σℓ−1(B1) > σℓ(B1) = · · · = σℓ+t−1(B1) > σℓ+t(B1).

Let further

rank
([

uℓ, . . . , uℓ+t−1

]T
A11

)
= τ ≤ t, where

[
uℓ, . . . , uℓ+t−1

]T
A11 ∈ Rt×n.

Then there exist orthogonal matrix Ψ ∈ O(t) such that

ΨT
([

uℓ, . . . , uℓ+t−1

]T
A11

)
=

[
♣

0t−τ,n

]
, where ♣ ∈ Rτ×n (5.27)

is of full row rank. Note that Ψ can be obtained, e.g., by the QR decomposi-
tion of [uℓ, . . . , uℓ+t−1]

TA11. Consequently

 Iℓ−1 0 0
0 Ψ 0
0 0 Im−ℓ−t+1

T[ Σ UTA11

]
Iℓ−1 0 0 0
0 Ψ 0 0
0 0 Id−ℓ−t+1 0
0 0 0 In

 =


Σ

uT1A11

...
uTℓ−1A11

♣
0t−τ,n

uTℓ+tA11

...
uTmA11


;

simply because the t-by-t block of Σmultiplied by ΨT andΨ from the left and
right, respectively, is effectively scalar matrix σℓ(B1)It. Again we can do such
modifications for all multiple singular values, and then again permute all the
copies of these singular values corresponding to zero rows down.

This brings us to an algorithm, how to decompose the given core prob-
lem to the let say proper part and the maximal degenerated subproblem. By
the ‘properness’ of the first part we mean that it does not contain any fur-
ther nontrivial degenerated subproblem. This algorithm proceeds as follows
(written in pseudo-code and assuming exact arithmetic):

01 Compute the standard SVD of B1, i.e., B1 = UΣV T.
02 Compute UTA11.
03 Do (5.27) for all blocks corresponding to multiple singular values.
04 Find indices ℓ (1 ≤ ℓ ≤ d) of all zero rows in modified matrix UTA11.
05 Remove rows with indices ℓ from modified UTA11, what remains is A11,α.
06 Remove rows and columns with indices ℓ from Σ, what remains is B1,α.
07 Form a diagonal matrix from the removed singular values to get B1,β.
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Remark 2. Note that the core problem revealing transformation of a problem
[B,A] (5.10) with full column rank B has the (slightly simpler) form

P T [ B A
] [ R 0

0 Q

]
=

[
B1 A11 0
0 0 A22

]
.

Extracting themaximal degenerated subproblem from the core problem [B1, A11]
(5.25) has the form

P T
1

[
B1 A11

] [ R1 0
0 Q1

]
=

[
B1,α 0 A11,α

0 B1,β 0

]
.

One could easily spot an analogy in structures of blocks in both equalities.
The only difference seems to be the exchanged roles of the system matrix
and right-hand side.

5.3.4 Step IV:Noteondecompositionof thedegeneratedcom-
ponent [B1,β, 0m,0]

Now we decompose the degenerated core problem[
B1,β 0mβ ,0

]
,

which is similar to the decomposition of the core problem complement (see
Section 5.3.2). It is so simply because of the analogy mentioned in the last
remark. But now the decomposition is even simpler because [B1,β, 0mβ ,0] =
B1,β is the square invertible matrix. Thus, we get

[
B1,β 0mβ ,0

]
∼

(mβ)

⊞
ℓ=1

[
σℓ(B1,β) 01,0

] . (5.28)

5.3.5 Step V: Decomposing the proper part of core problem
[B1,α, A11,α]—examples of irreducible core problems

Till this moment we did all the easy job. It remains to analyze possible de-
composability of the proper core problem [B1,α, A11,α] (i.e., such core problem
that already does not contain any degenerated component). We know that
it has some finite irreducible representation due to the strict decrease of the
quantity (5.20) while decomposing. However, this question seems to be still
very difficult to answer.

We start with the description of core problems that are clear or known for
being irreducible. There are two specific classes of irreducible core prob-
lems:
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• Incompatible single right-hand side CPs (m = n+ 1 and d = 1)

[
B1,α A11,α

]
∼


b11 σ1
b21 σ2
... . . .
bn,1 σn
bn+1,1 0 0 . . . 0

 ∼

φ1 ψ1

φ2 ψ2

. . . . . .
φn ψn

φn+1

 ,
where bt,1 ̸= 0 for all ts and σ1 > σ2 > . . . > σn > 0 in the first, and φt > 0,
ψt > 0 for all ts in the second representation.

• Compatible single right-hand side CPs (m = n and d = 1)

[
B1,α A11,α

]
∼


b11 σ1
b21 σ2
... . . .
bn,1 σn

 ∼

φ1 ψ1

φ2 ψ2

. . . . . .
φn ψn

 ,
where bt,1 ̸= 0 for all ts and σ1 > σ2 > . . . > σn > 0 in the first, and φt > 0,
ψt > 0 for all ts in the second representation.

In both cases the irreducibility follows immediately from the fact that d = 1.
Clearly, nonnegative integer partitioning of d = dα+dβ always yields one dj =
0, i.e., the jth component is degenerated with empty right-hand side, i.e., it
is fully degenerated (see Table 5.2). Therefore, any decomposition of such
problems would be trivial [B1, A11] = [B1, A11]⊞[00,0, 00,0], but we are interested
only in the nontrivial decompositions. (Note that these two representations
are originated in the core problem revealing by the SVD of the systemmatrix,
and by the (generalized) Golub–Kahan iterative bidiagonalization; see [20].)

The straightforward question, whether there exist irreducible core prob-
lems with d > 1, was positively answered in [4, Exampe 4.5], where it is
shown that

[
B1,α A11,α

]
=

1

4


3

2
2

1



−1 3

√
3
√
3

−3 −1
√
3 −

√
3√

3
√
3 1 −3√

3 −
√
3 3 1


is actually the core problem and it is irreducible. The irreducibility is there
proven by exhausting all possibilities, i.e., essentially by considering all pos-
sible dimensions of potential subproblems and searching the whole corre-
sponding orthogonal group.

Clearly, this approach can be applied also to other particular problems
(with concrete numbers) with similar structure (i.e., having the same dimen-
sions, the samemultiplicities of singular values, etc.). However, it seems that
the analysis of such problem with similar structure is untreatable in general.

Consequently, we leave questions of decomposability of proper core prob-
lems, and of characterization of general proper irreducible core problem
open. We are going to focus on them in future research.
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5.3.6 Summary of steps I–V
In steps (particularly) I–IV we have shown, that for any A ∈ Rm×n, B ∈ Rm×d,
there exist orthogonal matrices P ′ ∈ Om, Q′ ∈ Om, R′ ∈ Om, such that

P ′T [ B A
] [ R′ 0

0 Q′

]
=

 B1,α 0 0 A11,α 0
0 B1,β 0 0 0
0 0 0 0 A22

 ,
where

• the proper core problem A11,α, B1 is of minimal dimensions,
• the degenerated core problem right-hand side matrix B1,β is of maximal
dimensions and square invertible,

• and the core problem complement system matrix A22 is of maximal di-
mensions.

In the terms of decomposition (see (5.21), (5.24), (5.28), (5.22), and (5.23))[
B A

]
∼
[
B1,α A11,α

]
⊞

(mβ)

⊞
ℓ=1

[
σℓ(B1,β) 01,0

]
⊞
[
00,d−d 00,0

]
⊞

min(m−m,n−n)

⊞
ℓ=1

[
01,0 σℓ(A22)

]
⊞


[
0(m−m)−(n−n),0 0(m−m)−(n−n),0

]
if m−m > n− n[

00,0 00,0
]

if m−m = n− n[
00,0 00,(n−n)−(m−m)

]
if m−m < n− n

 th
e
co

re
pr
ob

le
m

 th
e
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m
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m
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We also know, that the proper core problem [B1,α, A11,α] can be further de-
composed and this decomposition is finite.

5.4 Note on TLS solvability in
the context of compositions

Finally, we would like to briefly note on the TLS solvability in the context of
(core) problem (de)composition. The most important results in this direction
are mentioned in paper [5], [4], and [10].
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The TLSminimization is orthogonally invariant, which is why we are work-
ing with orthogonally equivalent classes of problems, but it is not composi-
tion invariant. In particular, the core problem reduction more-or-less com-
mutes with the TLS minimization (up to the ‘detail’ that it has to be replaced
by the non-generic approach for problems from classes F2, F3, and S); see
Section 1.2 and papers [5] and [4]. However, as a consequence, the basic
decomposition to the core problem and the core problem complement is al-
ways useful when searching for the TLS solution. That is so simply because
the core problem complement system matrix A22 can always be ignored in
the minimization as it has no impact on the solution anyway.

On the other hand, the decomposition of the core problem itself and the
TLS minimization does not commute at all: TLS minimization is essentially
driven by the singular values of the extended matrix [B,A], i.e., when ap-
plied on the composed problem, it deals with all the components at the same
time, in general. Respectively, it depends on the mutual distribution of sin-
gular values of the individual components — but this might be completely
random, especially when the components are in some real-world problem
originated in completely different uncorrelated phenomenons. This may re-
sult, e.g., in full damping or regularizing-out some components with suffi-
ciently small singular values (and consequently the norm; in comparison to
other components); see [4, Example 5.3]. The other way summarized by:

First decompose, then solve, and finally compose solutions

may therefore end up with completely different answers; see [4] and [10].
Two of the previous results or observations may be, however, useful in

the context of this ‘first decompose, then solve’ reasoning:

• The degenerated subproblem [B1,β, 0mβ ,0] within the core problem (see
Section 5.3.3) represents a ‘pure residuum’. There is clearly no way
to approximate the square invertible matrix B1,β by columns of zero
(moreover empty) system matrix 0mβ ,0. The only available choice for
the corresponding approximate solution clearly is the empty (and thus
also zero) matrix 00,mβ

.
• On the other side of solvability spectrum, there are the compatible
components within the proper core problem (see the second class of ir-
reducible core problems in Section 5.3.5). Such problems can be solved
in the classical sense. Consequently, contrary to the previous item,
these problems do not contribute to the residuum at all. Moreover,
since such problem is still the core problem (satisfying in particular
(CP1) and (CP4) properties), its system matrix is always square invert-
ible and, thus, its solution is always unique.

How such subproblems affect the TLS solution of a composed problem,
while solving it at once (i.e., not component-wisely), is not fully clear. As
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already mentioned, it is strongly influenced by the interplay of singular val-
ues of the individual components. The analysis of such interplay of several
components w.r.t. the TLS solvability was preliminarily studied in particular
in our paper [10]; see the included copy at page 83.
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Major published results
related to the Part II

1. I. Hnětynková, M. Plešinger, and J. Žáková, Solvability classes for core
problems inmatrix total least squaresminimization, Applications ofMath-
ematics 64 (2) (2019), pp. 103–128.
https://link.springer.com/article/10.21136/
am.2019.0252-18
See also page 83, or reference [10].
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Abstract. Linear matrix approximation problems AX ≈ B are often solved by the total
least squares minimization (TLS). Unfortunately, the TLS solution may not exist in general.
The so-called core problem theory brought an insight into this effect. Moreover, it simplified
the solvability analysis if B is of column rank one by extracting a core problem having
always a unique TLS solution. However, if the rank of B is larger, the core problem may
stay unsolvable in the TLS sense, as shown for the first time by Hnětynková, Plešinger,
and Sima (2016). Full classification of core problems with respect to their solvability is
still missing. Here we fill this gap. Then we concentrate on the so-called composed (or
reducible) core problems that can be represented by a composition of several smaller core
problems. We analyze how the solvability class of the components influences the solvability
class of the composed problem. We also show on an example that the TLS solvability class
of a core problem may be in some sense improved by its composition with a suitably chosen
component. The existence of irreducible problems in various solvability classes is discussed.
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1. Introduction

1.1. The core problem theory. Let us consider a linear approximation problem

(1.1) AX ≈ B, where A ∈ R
m×n, B ∈ R

m×d, X ∈ R
n×d

are matrices representing the system matrix of a discretized model, observation ma-
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trix of measurements (together forming the data matrix [B,A]), and the matrix

of unknowns, respectively. For simplicity we usually assume R(B) 6⊆ R(A) and

R(B) 6⊆ N (AT), otherwise the problem has either a solution in a classical sense

AX = B with X ≡ A†B, or the column spaces of both matrices are orthogonal

ATB = 0 and it makes no sense to approximate columns of B by columns of A,

(where R(K), N (K), and K† denote respectively the range, null-space, and Moore–

Penrose pseudoinverse of K).

The core problem theory developed in [8], [4], [5] gives the following. For ev-

ery (1.1), there exist orthogonal matrices P ∈ R
m×m, PT = P−1, Q ∈ R

n×n,

QT = Q−1, R ∈ R
d×d, RT = R−1 so that

(1.2) (PTAQ)(QTXR) ≡
[
A11 0

0 A22

] [
X11 X12

X21 X22

]
≈
[
B1 0

0 0

]
≡ (PTBR),

with conforming partitioning of matrices (i.e., in particular, A11 and B1 have the

same number of rows) satisfying the following three conditions:

(CP1) The matrix A11 is of full column rank.

(CP2) The matrix B1 is of full column rank.

(CP3) Let A11 have ξ distinct nonzero singular values with multiplicities µj and

µξ+1 ≡ dim(N (AT
11)), and let U

′
j be matrices having orthonormal bases of

left singular vector subspaces of A11 as their columns.

The matrix (U ′
j)

TB1 is of full row rank µj for j = 1, . . . , ξ, ξ + 1.

In [8] and [4], it was shown, that (CP1)–(CP3) are equivalent to the minimality

of [B1, A11] (and maximality of A22) over all orthogonal transformations giving the

same zero-nonzero block structure of the system and observation matrices. Note

that [8] focuses on the case d = 1, i.e., when B and therefore also B1 are vectors,

while [4] focuses on the matrix right-hand side case d > 1. The minimally dimen-

sioned subproblem

(1.3) A11X11 ≈ B1

is called the core problem (within (1.1)) and (1.2) is the core problem revealing

transformation.

1.2. The total least squares minimization. Problems of the form (1.1) are

solved in many applications by using plenty of different approaches, usually based

on least squares techniques. Total least squares (TLS) minimization represents one

of them. It typically seeks for

(1.4) min
G∈Rm×d, E∈Rm×n

‖[G,E]‖F subject to R(B +G) ⊆ R(A+ E)

104

84



(where ‖K‖F denotes the Frobenius norm of K). Then any matrix XTLS satisfying

(A+ E)XTLS = B +G

is called the TLS solution of (1.1).

The TLS problem differs from the basic (ordinary) LS in including a correction E

of the model matrix A into the minimization formulation. Problems, for which

a TLS solution represents better approximation than a LS solution have been widely

discussed in the literature in the past decades. A nice overview can be found, e.g.,

in [10], Chapter 1.2 or [7]. For example, the TLS approach is advantageous in

classical errors-in-variables (EIV) models, where the aim is to reveal the existing

unknown model (representing relations between variables) from its approximation A

rather than obtaining a precise approximation of X , or in cases where model errors

are significantly larger than observation errors. The TLS method is applied (under

various names) in areas such as experimental modal analysis, system identification,

signal processing, image processing or chemometrics, see [7] for references, where LS

often fails to give reliable approximations.

However, allowing corrections of A in (1.4) has significant impact on the solvability

of the minimization problem. While LS solution always exists (and one can uniquely

select a solution with minimum norm), this is no longer true for TLS. The existence

and uniqueness ofXTLS has been analyzed in many papers starting from [1], [10], [12],

[13], and in particular [14]. Moreover, the so-called nongeneric solution was defined

in [10] for cases where the standard TLS solution does not exist or is complicated to

construct (as revealed and explained later in [3]). The question of TLS solvability

of a general problem (1.4) was finally resolved in [14] and [3]. In particular, [3]

introduced a novel full classification of problems (1.1) with respect to their TLS

solvability. The problems (1.1) are there divided into four solvability classes and for

each of them the (non)existence and (non)uniqueness of the TLS solution is proved.

Thus, the solvability class of a given problem reveals how its approximate solution

can be computed, and what is the meaning of this solution in terms of the original

data.

The TLS minimization (1.4) employs the Frobenius, i.e., orthogonally invariant

norm, and the core problem revealing transformation (1.2) is an orthogonal trans-

formation. Thus the TLS minimizations applied to the original and transformed

problems result in the same minima (up to the transformation). Taking into ac-

count the zero blocks in the transformed right-hand side (1.2), it is reasonable to

put X12 = 0, X21 = 0, X22 = 0. Consequently, using the core reduction as a sort

of preprocessing of the data A,B, it is obvious that we in fact need to solve the

single nontrivial and typically smaller subproblem—the core problem (1.3). The link
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between the TLS solution of the core problem and the TLS or non-generic solution of

the original problem if d = 1 was explained in [8]. There it was also proved that the

core problem with d = 1 is always uniquely TLS solvable. For problems with d > 1,

the first attempts of clarification were published in [2]. In particular it was shown

that if d > 1, the core problem may stay unsolvable in the TLS sense. However, com-

plete classification of core problems with respect to their solvability is still missing.

Such knowledge would indicate in which cases the core reduction simplifies the solv-

ability of the TLS problem, and clarify the meaning of the TLS solution of the core

problem with respect to the original data. Thus we study this open question here.

1.3. Contribution of this work. In this paper we present some further pieces of

the missing mosaic. We show which solvability classes are possible for core problems

with d = 2 and d > 2, resulting in full solvability classification of core problems

with respect to the number of their right-hand sides. Then we concentrate on the

so-called composed (or reducible) core problems introduced in [2]. Such problems

can be equivalently represented by a composition of several (in some sense block

independent) core problems of smaller dimensions. Assuming the solvability classes

of the components are known, we analyze feasible solvability classes of the resulting

composed problem. We also show on an example that the TLS solvability of a core

problem may be in some sense improved by its composition with a suitably chosen

component. For completeness, examples of irreducible problems in various solvability

classes are presented.

The text is organized as follows. Section 2 recapitulates the TLS classification, the

previous TLS solvability results for core problems, and the core problem composition.

Section 3 gives the full solvability classification of core problems with respect to the

number of their right-hand sides. Section 4 analyzes solvability classes in the course

of core problems composing. Section 5 comments on the irreducible core problems,

and Section 6 concludes the paper.

2. Recapitulation of known results

2.1. Classification of TLS problems. First of all we briefly recall the above-

mentioned full classification of problems with respect to their TLS solvability devel-

oped in [3]. It employs the singular value decompositions (SVD) of the data matrix

[B,A] ∈ R
m×(n+d) (we assume m > n + d for simplicity; in the other case one can

add zero rows to the data matrix, which is equivalent to adding (n + d) − m zero

singular values). Let

(2.1) [B,A] = UΣV T, where Σ =

[
diag(σ1, . . . , σn+d)

0

]
∈ R

m×(n+d),
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let q (0 6 q 6 n) and e (1 6 e 6 d) be the left- and right-multiplicity of σn+1, e.g.,

(2.2) σn−q > σn−q+1 = . . . = σn+1 = . . . = σn+e︸ ︷︷ ︸
(q + e)-tuple singular value

> σn+e+1

in the typical case (if q = n or e = d, then σn−q or σn+e+1 do not exist, respectively).

The classification is then based on ranks of individual blocks of V ,

(2.3) V =

[
V1

V2

]} d
}n =

[
V11 V12 V13

V21 V22 V23

]} d
}n

︸︷︷︸
n−q

︸︷︷︸
q+e

︸︷︷︸
d−e

(if q = n or e = d, then [V T
11, V

T
21]

T or [V T
13, V

T
23]

T have no columns, respectively).

Then (1.1) with the minimization (1.4) belongs to the class:

F if rank([V12, V13]) = d (so-called generic problem), in particular to its sub-class:

F1 if rank(V12) = e,

F2 if rank(V12) > e and rank(V13) = d− e, or

F3 if rank(V13) < d− e (i.e., F = F1 ∪ F2 ∪ F3); or

S if rank([V12, V13]) < d (so-called non-generic problem).

The problem has a TLS solution if and only if it belongs to F1 ∪F2, as shown in [3].

Thus problems in F3∪S (i.e., even the generic problems in F3) have no TLS solution.

This classification has been recently extended to TLS formulations with an arbitrary

unitarily invariant norm in (1.4), see [11].

Note that the so-called classical TLS algorithm (see [10], [3]) returns the TLS

solution only for problems from F1, moreover it always returns the solution minimal

in both the Frobenius and spectral norms. For problems from F2, the algorithm

requires a small modification (see [6]), but it is not able to return the minimal norm

solution in general.

2.2. Solvability of core problems. The key result proved in [8] for d = 1 is the

following: The core problem with single right-hand side has always the unique TLS

solution XTLS
11 . Moreover, its back-transformation X = Q

[
(XTLS

11 )T, 0
]T

RT (since

d = 1, R becomes equal to 1 or −1) is the (unique or minimum norm) TLS solution

of the original problem (if it is TLS solvable), or the so-called (unique or minimum

norm) nongeneric solution (otherwise).

In the context of solvability classification, it was shown in [3] that a problem

AX ≈ B with a single right-hand side belongs either to F1 or S, and the core
problem A11X11 ≈ B1 with a single right-hand side belongs always to F1. (Recall
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that all problems in F1 are TLS solvable, whereas in S they are not.) Note that
in [2] it was also shown that any core problem (i.e., with d = 1 as well as d > 1)

in F1 has a unique TLS solution.

Since the solution of the original problem and the core problem within are closely

linked, authors of [8] say that for d = 1 the core problem contains only the neces-

sary and all the sufficient information for solving the original problem in the TLS

sense. Therefore, the transition from the original general problem (GP) to the core

problem (CP) is called the core problem reduction. To simplify the exposition, we

schematically describe this by the diagram:

(2.4) (GP, 1,F1 or S)
core problem

reduction
// (CP, 1,F1),

where the first component of each triplet identifies whether we deal with general or

core problem, the second component specifies the number of its right-hand sides d,

and the last component denotes its solvability class. In the general case d > 1, such

scheme takes the form:

(2.5) (GP, d, any class)
core problem

reduction
// (CP, d, unknown class), d > d > 1,

since nothing is known about the resulting class of the core problem.

2.3. Composing of core problems. In [2], it was shown that we can compose

the core problems as follows. If A
(l)
11X

(l)
11 ≈ B

(l)
1 , l = α, β, represent two core problems

(i.e., each satisfies (CP1)–(CP3)), then the problem

(2.6) A11X11 ≡
(
PT

[
A

(α)
11 0

0 A
(β)
11

]
Q

)
X11 ≈

(
PT

[
B

(α)
1 0

0 B
(β)
1

]
R

)
≡ B11,

where P , Q, R are orthogonal matrices, also satisfies (CP1)–(CP3) and therefore

represents a core problem. We call such a core problem composed or reducible.

Schematically, we describe the composition by the sign “⊞” with the particular

summands indexed by small Greek letters from the beginning of the alphabet.

The relationship between X
(α)
11 , X

(β)
11 , and X11 is not clear, except for some special

cases. In particular, it was shown by examples in [2] that there exist two components

such that

(2.7) (CP, 1,F1)α ⊞ (CP, 1,F1)β = (CP, 2,F1) or (CP, 2,F2) or (CP, 2,S).

Further, there exist three components such that

(2.8) (CP, 1,F1)α ⊞ (CP, 1,F1)β ⊞ (CP, 1,F1)γ = (CP, 3,F3).
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Thus the core problem with d > 1 can belong to any of the four solvability classes.

Note that not every core problem with d > 1 can be written as a composition of single

right hand-side core problems. In [2], an example of irreducible F2 core problem was

presented.

Even though we have excluded compatible problems (i.e., with R(B) ⊆ R(A)) and

“fully incompatible” problems (i.e., with R(B) ⊆ N (AT), or equivalently R(B) ⊥
R(A) or ATB = 0), a component of a core problem can still have such properties. If

we try to find the core problem within a fully incompatible problem, we see that B1

is square invertible, and formally A11 has no columns, i.e., the data matrix takes the

form [B1, A11] = B1. Such degenerated core problem can play a role of a component

(which cannot be approximated and only increases the residual) in a composed prob-

lem. The degenerated component is always of F1. For illustration, we give examples

of the proper incompatible, compatible, and degenerated core problems (or their com-

ponents) A11X11 ≈ B1, A11 ∈ R
m×n, B1 ∈ R

m×d, with d = 1. Their so-called SVD

forms always look like

[B1, A11] =




b1 ς1

b2 ς2
...

. . .

bn ςn

bn+1 0 0 . . . 0



,




b1 ς1

b2 ς2
...

. . .

bn ςn


 , and [ b1 ] ,

respectively, where bj 6= 0 and ςj > ςj+1 > 0. Clearly m = n + 1, n, and 1 in these

three respective cases, and n = 0 in the last one.

3. Solvability classes of core problems with respect to the number

of their right-hand sides

The single right-hand side core problem always belongs to the class F1, see [8].

Examples of F2, and S core problems are in (2.7) built up from two single right-hand
components, whereas F3 core problem in (2.8) is built up from three, see [2]. This

motivates a question whether the number of right-hand sides d restricts the available

classes of core problems not only for d = 1 but also for d > 1. We analyze this below.

3.1. Core problems with two right-hand sides. The following theorem gives

all possible classes for d = 2.

Theorem 3.1. Let A11X11 ≈ B1, B1 ∈ R
m×d, be a core problem with d = 2 right-

hand sides. Then the core problem belongs to the class F1, F2, or S. Equivalently,
the core problem with d = 2 cannot belong to the class F3.
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P r o o f. Recalling that there exist composed core problems with d = 2 in F1,

F2, and S (see (2.7)), we only need to exclude F3.

Assume by contradiction that there exists a core problem with d = 2 in F3. The

classification is based on the ranks of blocks of V (see (2.3)), and the class F3 is

characterized by rank([V12, V13]) = d and rank(V13) < d− e, where e (1 6 e 6 d) is

the right-multiplicity of the singular value σn+1. Since d = 2, we have e ∈ {1, 2}.
The inequality rank(V13) < d− e = 2− e then implies that

(3.1) e = 1, rank(V13) = 0, and V13 ∈ R
2×1.

Because the number of columns of V13 is equal to the sum of multiplicities of singular

values strictly smaller than σn+1, we see that there is only one simple (possibly zero)

singular value with this property, i.e., σn+1 > σn+2 > 0. Here we need to use another

property of core problems that has not been mentioned yet:

(CP5) Let [B1, A11] have χ distinct nonzero singular values with multiplicities ̺j
and ̺χ+1 ≡ dim(N ([B1, A11])), and let V

′
j be matrices having orthonormal

bases of left singular vector subspaces of [B1, A11] as their columns.

The leading d × ̺j submatrix of V
′
j is of full column rank ̺j for j =

1, . . . , χ, χ+ 1; see [5] and [2].

We see that [V T
13, V

T
23]

T is one of the matrices V ′
j , and V13 is one of the d× ̺j blocks.

Therefore, V13 has linearly independent columns, i.e., is of rank one which is in

contradiction with (3.1). �

Note that in the case of composed core problem (i.e., having two single right-hand

side components), this theorem directly implies that, schematically:

∀(CP, 1,F1)α, ∀(CP, 1,F1)β ,

(CP, 1,F1)α ⊞ (CP, 1,F1)β = (CP, 2,F1), (CP, 2,F2), or (CP, 2,S),

or equivalently

(CP, 1,F1)α ⊞ (CP, 1,F1)β 6= (CP, 2,F3).

3.2. Core problems with three and more right-hand sides. First we prove

a theorem stating that it is always possible to compose a general core problem with

a single right-hand side component without changing the solvability class.

Theorem 3.2. Let A
(α)
11 X

(α)
11 ≈ B

(α)
1 , A

(α)
11 ∈ R

mα×nα , B
(α)
1 ∈ R

mα×dα be a core

problem (that will serve as a component) and let it be in the class C ∈ {F1,F2,F3,S}.
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Then there exists a single right-hand side component A
(β)
11 X

(β)
11 ≈ B

(β)
1 , A

(β)
11 ∈

R
mβ×nβ , B

(β)
1 ∈ R

mβ×1 such that the composed core problem

A11X11 ≡
(
PT

[
A

(α)
11 0

0 A
(β)
11

]
Q

)
X11 ≈

(
PT

[
B

(α)
1 0

0 B
(β)
1

]
R

)
≡ B11,

is also in the class C.
Schematically: ∀(CP, dα, C)α, ∃(CP, 1,F1)β such that

(CP, dα, C)α ⊞ (CP, 1,F1)β = (CP, dα + 1, C),

where C ∈ {F1,F2,F3,S}.
P r o o f. Let σ

(α)
i , i = 1, . . . nα + dα, be the singular values of the α-component

[B
(α)
1 , A

(α)
11 ]. Denote ql, el the left- and right-multiplicity of the singular value of inter-

est, i.e., σ
(α)
nl+1. Construct a core problem representing the β-component [B

(β)
1 , A

(β)
11 ]

arbitrarily with the only restriction that

σ
(β)
nβ+1 = σ

(α)
nα+1.

Since dβ = 1, the singular values of the β-component are simple and thus the left-

and right-multiplicity of σ
(β)
nβ+1 is qβ = 0, eβ = 1. Then in the partitioning of the

V (l) matrix from the SVDs of the extended matrices, we get

V
(α)
1 = [V

(α)
11︸ ︷︷ ︸

nα − qα

, V
(α)
12︸ ︷︷ ︸

qα + eα

, V
(α)
13 ]︸ ︷︷ ︸

dα − eα

}
dα, V

(β)
1 = [V

(β)
11︸ ︷︷ ︸
nβ

, V
(β)
12 ]︸ ︷︷ ︸
1

}
1,

here V
(β)
13 does not exist (it has zero columns). Moreover, V

(β)
12 = v

(β)
1,nβ+1 6= 0. Then,

similarly to (3.3),

[V11, V12, V13 ] = RT

[
V

(α)
1 0

0 V
(β)
1

]
Ψ,

= RT

[
V

(α)
11 0 V

(α)
12 0 V

(α)
13

0 V
(β)
11 0 V

(β)
12 0

]

Ψ11

I

I


 .

Clearly,

rank(V12) = rank

(
RT

[
V

(α)
12 0

0 v
(β)
1,nβ+1

])
= rank(V

(α)
12 ) + 1,

rank(V13) = rank

(
RT

[
V

(α)
13

0

])
= rank(V

(α)
13 ),

and rank([V12, V13]) = rank([V
(α)
12 , V

(α)
13 ]) + 1,
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where V12 ∈ R
d×(q+e), V13 ∈ R

d×(d−e), d ≡ dα+1, d−e = dα−eα so e ≡ eα+1, and

q+ e = qα + eα+1 so q ≡ qα. Thus the α-component [B
(α)
1 , A

(α)
11 ] and the composed

core problem [B1, A11] are of the same class. �

Consequently, applying the theorem to examples of core problems with d = 2

from [2], see (2.7), we find there exist core problems with d = 3 in F1, F2 and S.
Recalling the example (2.8), we see that for d = 3 there exist core problems in all

four solvability classes. For d > 3, we can proceed analogously giving full solvability

classification summarized in Table 1. Note that for any given d > 1 and any feasible

class, we can find a composed core problem having only single right-hand side com-

ponents. This result is interesting in view of the fact that any core problem with

d = 1 belongs to F1 (the set of problems having always the TLS solution).

d Classes

1 F1 — — —

2 F1 F2 — S
3 and more F1 F2 F3 S

Table 1. Core problem with d right-hand sides belongs to one of the following classes.

3.3. Note on composing identical components. In general, it is not known

what is the relation between the class of a composed problem and the classes of its

components. Now we show that when a core problem is composed with itself, the

solvability class cannot change. The theorem gives another way how to construct

composed core problems in selected classes.

Theorem 3.3. Let A11X11 ≈ B1 be a core problem. If it is composed of two

(or more) identical components A
(α)
11 X

(α)
11 ≈ B

(α)
1 , then the core problem and its

component belong to the same class.

Schematically:

∀(CP, dα, C)α, (CP, dα, C)α ⊞ (CP, dα, C)α = (CP, 2dα, C),

and thus also
k

⊞
i=1

(CP, dα, C)α = (CP, kdα, C),

where C ∈ {F1,F2,F3,S}.
P r o o f. The statement holds trivially for compatible and degenerated compo-

nents. Therefore, we focus on the proper incompatible components. Recall that

[B1, A11] = PT



B

(α)
1 0 0 A

(α)
11 0 0

0
. . . 0 0

. . . 0

0 0 B
(α)
1 0 0 A

(α)
11



[
R 0

0 Q

]
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= PT [ Ik ⊗B
(α)
1 Ik ⊗A

(α)
11 ]

[
R 0

0 Q

]
,

where “⊗” denotes the Kronecker product; A(α)
11 ∈ R

mα×nα , B
(α)
11 ∈ R

mα×dα , n ≡
knα, m ≡ kmα, and d ≡ kdα. Consider the full SVD [B

(α)
1 , A

(α)
11 ] = U (α)Σ(α)(V (α))T

with square U (α) and V (α), with partitionings

(3.2) V (α) =

[
V

(α)
1

V
(α)
2

]} dα
}nα

, and V
(α)
1 = [V

(α)
11 , V

(α)
12 , V

(α)
13 ]

as in (2.3). This immediately gives the SVD of the composed problem in the form

[B1, A11] = (PT(Ik ⊗ U (α))Π)︸ ︷︷ ︸
U

(ΠT(Ik ⊗ Σ(α))Ψ)︸ ︷︷ ︸
Σ

([
R 0

0 Q

]T [
Ik ⊗ V

(α)
1

Ik ⊗ V
(α)
2

]
Ψ

)

︸ ︷︷ ︸
V

T

,

where Π and Ψ are permutation matrices sorting the singular values in the nonin-

creasing order on the diagonal of Σ. Since the permutations realize the commutation

of the Kronecker product

ΠT(Ik ⊗ Σ(α))Ψ = Σ(α) ⊗ Ik,

where Σ is square, we have simply Π = Ψ, see [9]. Note that multiplicities of all

singular values are in the composed problem k-times larger than in its component.

Let us focus on V and denote v
(α)
:,j the jth column of V

(α)
1 . Then we get

(3.3) V1 = [V11, V12, V13 ] = RT(Ik ⊗ V
(α)
1 )Ψ

= RT [ Ik ⊗ v
(α)
:,1 , Ik ⊗ v

(α)
:,2 , . . . , Ik ⊗ v

(α)
:,nα+dα

] .

Clearly, the dimensions of Vij in (3.3) are k-times larger than the dimensions of V
(α)
ij

in (3.2). From the structure of the last matrix, and since R is orthogonal, we see

that

rank(Vij) = rank(RVij) = k · rank(V (α)
ij ),

i.e., also the ranks of Vij are k-times larger than the ranks of V
(α)
ij .

Since the solvability classification is based on multiplicities of singular values, ranks

and sizes of the blocks (in particular on the relations between these quantities), and

all these quantities are in the composed problem just k-times larger, the component

and the composed problem must belong to the same class. �

Theorems 3.2 and 3.3 formulate basic relations between solvability classes in the

course of core problems composing in two special cases. Further results are given in

the next section.
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4. Solvability classes in the course of core problems composing

In all cases discussed previously (see Theorems 3.2 and 3.3, and examples (2.7)),

a composition of core problems leads to a composed problem with the same or worse

TLS solvability on the scale

F1 (the best)—F2—F3—S (the worst).

Recall that F1 problems always have a TLS solution (that can be computed by

the classical TLS algorithm), and core problems have a unique TLS solution; F2

problems also have a TLS solution (that cannot be simply computed by the classical

TLS algorithm); F3 problems are still generic, but they have no TLS solution; and S
problems are nongeneric and have no TLS solution. Such scale naturally corresponds

to “removing the linear independence” from the upper right corner of V (see (2.3)

and the classification below) and motivates the question whether the composition

always worsens the TLS solvability. First we build up an illustrative example, then

some general statements follow.

4.1. Does the composition always worsen the TLS solvability? The fol-

lowing example illustrates that composition of core problems can counter-intuitively

improve the TLS solvability class. First, we give a particular example of an F1

single right-hand side core problem. Then we start to compose it to obtain more

complicated problems.

E x am p l e 4.1. Consider the approximation problem

(4.1)

[
als

blc

]
x ≈

[
alc

−bls

]
, where al > bl > 0,

s = sin(ϕ), c = cos(ϕ), ϕ 6= 1
2πk, k ∈ Z.

Then

[B
(l)
1 , A

(l)
11 ] ≡

[
alc als

−bls blc

]
= I2

[
al 0

0 bl

] [
c −s

s c

]T

is in principle the SVD of the extended matrix. Since ml = 2, nl = 1, dl = 1, so

σ
(l)
nl+1 = bl is simple, so ql = 0, el = 1, and V

(l)
1 = [c, s], V12 = [s], and V13 has no

columns. Consequently (4.1) is of class F1 and has a unique TLS solution.

To show that (4.1) is a core problem, we need to verify that it satisfies (CP1)–

(CP3). Clearly A
(l)
11 as well as B

(l)
1 are of full column rank, i.e., (CP1) and (CP2)

hold. Employing the SVD

A
(l)
11 =

(
1√

(als)2 + (blc)2

[
als −blc

blc als

])[√
(als)2 + (blc)2

0

]
[ 1 ]T,
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it is easy to see that both

(U ′
1)

TB
(l)
1 =

(
1√

(als)2 + (blc)2

[
als

blc

])
B

(l)
1 =

(a2l − b2l )cs√
(als)2 + (blc)2

,

(U ′
2)

TB
(l)
1 =

(
1√

(als)2 + (blc)2

[−blc

als

])
B

(l)
1 =

−2albl√
(als)2 + (blc)2

are (one-by-one) full row rank matrices, i.e., (CP3) is satisfied. Consequently (4.1)

is a core problem of the class F1.

Now we take two particular choices of the parameters al, bl in the example above,

such that the composition of (4.1) with a single right-hand side degenerated compo-

nent results in a core problem in S and F1, respectively.

E x am p l e 4.2. Consider the core problem (4.1) with l = α, aα = 3 and bα = 2.

Consider the core problem (4.1) with l = β, aβ = 5, bβ = 1. Compositions of

these problems with the same degenerated component [B
(γ)
1 , A

(γ)
11 ] = [B

(γ)
1 ] = [4]

(belonging also to F1), gives composed core problems with the following SVDs




3c 0 3s

−2s 0 2c

0 4 0



 =




0 1 0

0 0 1

1 0 0








4 0 0

0 3 0

0 0 2








0 c −s

1 0 0

0 s c




T

,(4.2)




5c 0 5s

−1s 0 1c

0 4 0



 =




1 0 0

0 0 1

0 1 0








5 0 0

0 4 0

0 0 1








c 0 −s

0 1 0

s 0 c




T

,(4.3)

respectively. The partitioning (2.3) of the matrices V is suggested by the lines. Then

(4.2) is of class S, while (4.3) remains in the class F1.

Thus we have two proper incompatible core problems (both with d = 2) which we

now compose together.

E x am p l e 4.3. Consider the core problems (4.2) and (4.3). Their composition

results in a composed core problem with the following extended matrix and its SVD:

[B1, A11] =




B
(α)
1 0 A

(α)
11

0 B
(γ)
1 0

B
(β)
1 0 A

(β)
11

0 B
(γ)
1 0


 =




3c 0 3s

−2s 0 2c

0 4 0

5c 0 5s

−1s 0 1c

0 4 0



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=




0 1 0

0 0 1

1 0 0

1 0 0

0 0 1

0 1 0







5 0 0

0 4 0

4 0 0

0 3 0

0 0 2

0 0 1







0 c −s

1 0 0

c 0 −s

0 1 0

0 s c

s 0 c




T

.

The partitioning (2.3) of V is again suggested by the lines. Clearly, we got a core

problem with d = 4 that is of the class F3.

If we denote problems (4.2) and (4.3) as δ- and ε-component, respectively, the

composition above can be schematically expressed as follows:

((CP, 1,F1)α ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 2,S)δ

⊞ ((CP, 1,F1)β ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 2,F1)ε

= (CP, 4,F3).

Now we look at the whole process the other way. Having in hand a problem of

the class S (i.e., nongeneric one), its composition with a suitable F1 problem may

result in a problem in F3 (i.e., it becomes generic). This can be seen as a form of

correction, or improvement of the δ-component in terms of TLS solvability classes.

Such improvement can be done in general, which will be investigated in the next

section.

R em a r k 4.4. Since the core problems composition is associative and commu-

tative (up to a permutation of components), the problem from Example 4.3 can also

be expressed as follows (classes of the intermediate problems or components can be

seen directly by crossing out suitable rows and columns of the SVD in Example 4.3):

(CP, 4,F3) = ((CP, 1,F1)α ⊞ (CP, 1,F1)β)︸ ︷︷ ︸
(CP, 2,F1)α⊞β

⊞ ((CP, 1,F1)γ ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 2,F1)γ⊞γ

= ((CP, 1,F1)α ⊞ (CP, 1,F1)β ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 3,S)α⊞β⊞γ

⊞(CP, 1,F1)γ

= ((CP, 1,F1)α ⊞ (CP, 1,F1)γ ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 3,F3)α⊞γ⊞γ

⊞(CP, 1,F1)β

= ((CP, 1,F1)β ⊞ (CP, 1,F1)γ ⊞ (CP, 1,F1)γ)︸ ︷︷ ︸
(CP, 3,F1)β⊞γ⊞γ

⊞(CP, 1,F1)α.

The first and the last row show that a composition of two F1 (in the first row one

proper incompatible and one degenerated; in the last row two proper incompatible)
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components may result in an F3 problem. Recall that for two single right-hand side

(i.e., F1) components, such composition is not possible (see Theorem 3.1 and the

comment below), and therefore it was not observed in [2].

4.2. Improvement of nongeneric problems. The following theorem shows

that it is always possible to move a nongeneric (i.e., class S) core problem to the
class of generic problems by composing it with another problem representing a sort

of correction of the measured data, see Example 4.3.

Theorem 4.5. Let A
(α)
11 X

(α)
11 ≈ B

(α)
1 , A

(α)
11 ∈ R

mα×nα , B
(α)
1 ∈ R

mα×dα be a core

problem (that will serve as a component) and let it be in the class S. Then there
exists a component A

(β)
11 X

(β)
11 ≈ B

(β)
1 , A

(β)
11 ∈ R

mβ×nβ , B
(β)
1 ∈ R

mβ×dβ such that the

composed core problem

A11X11 ≡
(
PT

[
A

(α)
11 0

0 A
(β)
11

]
Q

)
X11 ≈

(
PT

[
B

(α)
1 0

0 B
(β)
1

]
R

)
≡ B11,

is in the class F = F1 ∪ F2 ∪ F3.

Schematically: ∀(CP, dα,S)α, ∃(CP, dβ , C)β so that

(CP, dα,S)α ⊞ (CP, dβ , C)β = (CP, dα + dβ ,F),

where C ∈ {F1,F2,F3,S} and F = F1 ∪ F2 ∪ F3.

P r o o f. Let [B
(α)
1 , A

(α)
11 ] = U (α)Σ(α)(V (α))T be the SVD with the partition-

ing (2.3) of V (α). Further, let

σ
(α)
1 > σ

(α)
2 > . . . > σ

(α)
nα−qα

,

be the singular values of V
(α)
11 . Let k be the number of distinct singular values

of V
(α)
11 with the multiplicities ̺j , j = 1, . . . , k; i.e.,

k∑
j=1

̺j = nα − qα. Consider also

a partitioning of V
(α)
11 with respect to these multiplicities,

V
(α)
11 = [V

(α)
11,1, V

(α)
11,2, . . . , V

(α)
11,k ] ∈ R

dα×(nα−qα), with V
(α)
11,j ∈ R

dα×̺j

being of full column ranks. Since the α-component is nongeneric, i.e., of class S,
[V

(α)
12 , V

(α)
13 ] has linearly dependent rows. Let t be defined so that

(4.4) rank ([V
(α)
11,t , V

(α)
11,t+1, . . . , V

(α)
11,k, V

(α)
12 , V

(α)
13 ]) = dα, and

rank ([V
(α)
11,t+1, . . . , V

(α)
11,k, V

(α)
12 , V

(α)
13 ]) < dα.
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Now we construct a suitable β-component. Consider an arbitrary β-component

such that it belongs to F1 (thus [V
(β)
12 , V

(β)
13 ] ∈ R

dβ×dβ is square invertible and

qβ = 0) and

σ
(β)
nβ+1 ≡ σ

(α)
̺1+...+̺t−1+1 = . . . = σ

(α)
̺1+...+̺t−1+̺t

,

i.e., the eβ-tuple singular value of the β-component corresponding to V
(β)
12 is equal

to the ̺t-tuple singular value of the α-component corresponding to V
(α)
11,t . Then the

block V1 ∈ R
d×(n+d) with d = dα + dβ , n = nα +nβ , from the SVD of the composed

problem takes the form

V1 = [V11, V12, V13] =

[
[V

(α)
11,1, . . . , V

(α)
11,t−1] 0

0 V
(β)
11

V
(α)
11,t 0

0 V
(β)
12︸ ︷︷ ︸

̺t + eβ

[V
(α)
11,t+1, . . . , V

(α)
11,k], V

(α)
12 , V

(α)
13 0

0 V
(β)
13

]

︸ ︷︷ ︸
(̺t+1 + . . .+ ̺k) + (dα + qα) + (dβ − eβ)




Ψ11

I

Ψ13



 .

To align the blocks suggested by the vertical lines with the partitioning [V11, V12, V13],

the (n+1)st (i.e., the dth last) column of V1 has to be in

[
V

(α)
11,t 0

0 V
(β)
12

]
. Equivalently

d = dα + dβ > (̺t+1 + . . .+ ̺k) + (dα + qα) + (dβ − eβ), i.e.,

eβ > (̺t+1 + . . .+ ̺k) + qα.

Recall that also eβ 6 dβ , see (2.2)–(2.3). Thus, put

eβ ≡ (̺t+1 + . . .+ ̺k) + qα + 1, and

dβ ≡ (̺t+1 + . . .+ ̺k) + qα + 1 +∆, ∆ > 0.

Then V
(β)
13 ∈ R

dβ×∆ and V13 ∈ R
(dα+dβ)×((̺t+1+...+̺k)+(dα+qα)+(dβ−eβ)) ≡ R

d×(d−1).

We see that blocks are aligned and the (n + 1)st (dth last) column of V1 is exactly

the last column of V12. Since (4.4) is of full row rank dα and [V
(β)
12 , V

(β)
13 ] is square

invertible of rank dβ ,

[V12, V13] =

[
V

(α)
11,t 0 [V

(α)
11,t+1, . . . , V

(α)
11,k], V

(α)
12 , V

(α)
13 0

0 V
(β)
12 0 V

(β)
13

] [
I

Ψ13

]

is also of full row rank d = dα + dβ , and thus the composed problem is of class F .
It remains to show that there always exists a β-component satisfying all the re-

quested properties. We take the simplest one,

(4.5) [B
(β)
1 , A

(β)
11 ] = [B

(β)
1 ] ≡ σ

(α)
̺1+...+̺t−1+1I̺t+1+...+̺k+qα+1,
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i.e., nβ = 0 (it is a degenerated component),mβ = dβ = eβ = (̺t+1+. . .+̺k)+qα+1,

∆ = 0, and σ
(β)
nβ+1 ≡ σ

(β)
1 = σ

(α)
̺1+...+̺t−1+1 with the multiplicity eβ . The matrix V

(β)

from the SVD of [B
(β)
1 , A

(β)
11 ] contains only the block V

(β)
12 (the other blocks have no

rows or columns, see (2.3) and the classification below). Moreover, V (β) = V
(β)
12 =

I̺t+1+...+̺k+qα+1 is obviously square invertible. �

Note that we proved slightly stronger variant of Theorem 4.5. Instead of looking

for a general β-component, we restricted ourselves first only to the class F1, and

then only to the degenerated (class F1) components. However, such restriction was

used only for simplicity and it is not necessary (see in particular Example 4.3).

Recall further the definition of t in (4.4). Instead of t, we may use any ̺τ and

V
(α)
11,τ , 1 6 τ 6 t, in the roles of ̺t and V

(α)
11,t for the construction of a β-component

in the proof. In particular, we may simply use a degenerated β-component in the

form1 [B
(β)
1 , A

(β)
11 ] = [B

(β)
1 ] ≡ σ

(α)
1 Inα+1 instead of (4.5). Our choice in (4.5) is in

some sense the minimal one (since t is maximal among all τ ’s, ∆ = 0 is minimal

among all ∆’s, and both minimize the dimensions of the β-component).

Moreover, the resulting composed problem has in its SVD the block V13 that

contains

[
V

(α)
12 V

(α)
13

0 0

]
as a submatrix. Since [V

(α)
12 , V

(α)
13 ] ∈ R

dα×(dα+qα), qα > 0, has

linearly dependent rows and the number of its columns is larger than or equal to the

number of columns, it has also linearly dependent columns. Thus also

[
V

(α)
12 V

(α)
13

0 0

]

and in particular V13 have linearly dependent columns. Consequently, the problem

composed in the proof above does not belong to the classes F1 and F2. We actually

proved that, schematically:

∀(CP, dα,S)α, ∃ (CP, dβ ,F1)β so that

(CP, dα,S)α ⊞ (CP, dβ ,F1)β = (CP, dα + dβ ,F3),

where the β-component is degenerated. This motivates a general result as follows.

Let us return back to the original, less restricted case: If we compose the α-

component of the class S with an arbitrary β-component so that the resulting com-
posed problem is in F , then (see in particular (4.4))

[
V

(α)
11,t

0

]
and

[
V

(α)
12 V

(α)
13

0 0

]
have

to be submatrices of [V12, V13]. Since the singular value corresponding to V
(α)
11,t is

strictly larger than the singular value corresponding to V
(α)
12 ,

[
V

(α)
12 V

(α)
13

0 0

]
is a sub-

matrix of V13. Consequently (as discussed above), if the composition results in an

1Note that the so-called TLS algorithm when applied to the composed problem with this
choice of a β-component returns a zero output.
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F problem, it always belongs to F3. The classes F1 and F2 are not available. We

formulate this observation as a corollary.

Corollary 4.6. Let A
(α)
11 X

(α)
11 ≈ B

(α)
1 be a core problem in the class S, and let

A
(β)
11 X

(β)
11 ≈ B

(β)
1 be an arbitrary core problem. Their composition cannot result in

a problem in the class F1 or F2.

Schematically: ∀(CP, dα,S)α, ∀(CP, dβ , C)β,

(CP, dα,S)α ⊞ (CP, dβ , C)β 6= (CP, dα + dβ ,F1), (CP, dα + dβ ,F2),

where C ∈ {F1,F2,F3,S}.
In other words, we are able to move a class S (nongeneric) problem to the class F3

(generic, but without a TLS solution), but no better result is achievable by employing

the approach above. The TLS solvability of a nongeneric core problem cannot be

improved by its composition with another core problem.

4.3. Available and unavailable classes. Table 2 summarizes all the known

available compositions of two core problems in terms of classes, see (2.7), Theo-

rems 3.3, 3.2, Example 4.3, and Remark 4.4.

⊞ F1 F2 F3 S
F1 F1, F2, F3, or S ⋆ sym. sym. sym.

F2 F2 F2 sym. sym.

F3 F3 F3 sym.

S F3 or S ⋆ S ⋆

Table 2. List of known available compositions of two core problems (components) in terms
of classes. Stars (⋆) denote cases where all four possible results have been analyzed
(cf. Table 3). The table is symmetric.

On the contrary, at the end of the previous section we have found for the first

time a combination (of classes of components and a class of the resulting composed

problem) that is not achievable. Consequently, it is clear that all 40 combinations

are not available for core problem compositions. The following theorems discuss two

more such cases. First we prove the assertion of Corollary 4.6 also for F3 problems.

Then we show that a combination of two S class core problems results in a composed
problem belonging again to S.

Theorem 4.7. Let A
(α)
11 X

(α)
11 ≈ B

(α)
1 be a core problem in the class F3, and let

A
(β)
11 X

(β)
11 ≈ B

(β)
1 be an arbitrary core problem. Their composition cannot result in

a problem in the class F1 or F2.
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Schematically: ∀(CP, dα,F3)α, ∀(CP, dβ , C)β ,

(CP, dα,F3)α ⊞ (CP, dβ , C)β 6= (CP, dα + dβ ,F1), (CP, dα + dβ ,F2),

where C ∈ {F1,F2,F3,S}.
P r o o f. First of all note that the assertion is trivially true for F3 problems which

are composed, and contain an S component (use Corollary 4.6 and the associativity
of core problem composing). Now consider a general F3 problem as the α-component

with partitioning of the matrix of right singular vectors as usual. Then the blocks

of V
(α)
1 =

[
V

(α)
11 , V

(α)
12 , V

(α)
13

]
∈ R

dα×(nα+dα) satisfy:

[V
(α)
12 , V

(α)
13 ] ∈ R

dα×(dα+qα) is of full row rank dα, and

V
(α)
13 ∈ R

dα×(dα−eα) has linearly dependent columns (and rows, eα > 1).

Recall that V
(α)
12 corresponds to the singular value σ

(α)
nα+1 with multiplicity qα + eα.

Consider also the SVDs of the β-component and of the composed core problem, in

particular the matrices V
(β)
1 ∈ R

dβ×(nβ+dβ) and V1 = [V11, V12, V13] ∈ R
d×(n+d).

Clearly,

V1 =

[
V

(α)
1 0

0 V
(β)
1

]
Ψ =

[
V

(α)
11 V

(α)
12 V

(α)
13 0

0 0 0 V
(β)
1

]
Ψ,

where the permutation matrix Ψ sorts the singular values originated in both com-

ponents into nonincreasing order. Thus Ψ does not change the ordering of columns

of V1 originated in one particular component, it only interlaces them with the columns

originated in the other component.

Assume that the composed problem is in the class F . Then [V12, V13] is of full

row rank. Since the α-component is of F3 and V
(α)
13 has linearly dependent rows,[

V
(α)
12 V

(α)
13

0 0

]
is a submatrix of [V12, V13]. Thus σn+1 (the singular value correspond-

ing to the V12 block of the composed problem) satisfies σn+1 > σnα+1. Since V
(α)
13

corresponds to singular values strictly smaller than σn+1,

[
V

(α)
13

0

]
is a submatrix of

V13. Since V
(α)
13 has linearly dependent columns, V13 has linearly dependent columns

as well. Consequently, the composed problem cannot belong to F1 or F2. �

Theorem 4.5, Corollary 4.6, and Theorem 4.7 together are of particular impor-

tance. They show that while class S problems can be moved to F3 (but no better

improvement is possible), F3 problems cannot be improved further. Consequently,

the set of F3 and S core problems is in some sense closed with respect to compositions
with core problems from other classes. This indicates that the distinction between

F3 and S problems is rather artificial, as it originated in the generic—nongeneric
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classification introduced in [10]. Recall that in both F3 and S, the TLS solution
does not exist. Now we show that the class S is closed in a slightly weaker sense.

Theorem 4.8. Composition of two (or more) class S core problems always results
in a class S problem.

Schematically: ∀(CP, dα,S)α, ∀(CP, dβ ,S)β ,

(CP, dα,S)α ⊞ (CP, dβ ,S)β = (CP, dα + dβ ,S),

or equivalently

(CP, dα,S)α ⊞ (CP, dβ ,S)β 6= (CP, dα + dβ ,F), F = F1 ∪ F2 ∪ F3.

P r o o f. Let A
(l)
11X

(l)
11 ≈ B

(l)
1 , A

(l)
11 ∈ R

ml×nl , B
(l)
1 ∈ R

ml×dl for l = α, β be two

core problems in the class S. Consider their SVDs [B(l)
1 , A

(l)
11 ] = U (l)Σ(l)(V (l))T, with

the partitionings

V (l) =

[
V

(l)
1

V
(l)
2

]
=

[
V

(l)
11 V

(l)
12 V

(l)
13

V
(l)
21 V

(l)
22 V

(l)
23

] } dl
}nl

rank ([V
(l)
12 , V

(l)
13 ]) < dl.

We are interested in the singular values σ
(l)
nl+1, l = α, β. There are two cases: Either

σ
(α)
nα+1 = σ

(β)
nβ+1, or σ

(α)
nα+1 > σ

(β)
nβ+1 (the third case σ

(α)
nα+1 < σ

(β)
nβ+1 is essentially the

same as the second, only with the exchanged roles of α- and β-components).

Case 1. Let σ
(α)
nα+1 = σ

(β)
nβ+1. Then the SVD of

[B1, A11] = PT

[
B

(α)
1 0 A

(α)
11 0

0 B
(β)
1 0 A

(β)
11

] [
R 0

0 Q

]

gives V with the structure

V1 = RT

[
V

(α)
11 0 V

(α)
12 0 V

(α)
13 0

0 V
(β)
11 0 V

(β)
12 0 V

(β)
13

]


Ψ11

I

Ψ13



 ∈ R
d×(n+d),

where n ≡ nα + nβ , d ≡ dα + dβ . It remains to verify whether the vertical lines

correspond to the partitioning of V1 = [V11, V12, V13] with respect to σn+1, i.e.,

whether σn+1 is the singular value σ
(α)
nα+1 = σ

(β)
nβ+1.

Since V
(l)
11 ∈ R

dl×(nl−ql), we have

[
V

(α)
11 0

0 V
(β)
11

]
∈ R

d×(n−qα−qβ). Because ql > 0,

we have n− qα − qβ < n+ 1, i.e., the (n+ 1)th column of V1 does not belong to the
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first block. Similarly, from V
(l)
13 ∈ R

dl×(dl−el) we get

[
V

(α)
13 0

0 V
(β)
13

]
∈ R

d×(d−eα−eβ).

Because el > 1, then d > d − eα − eβ , i.e., the (n + 1)th column (which is actually

also the dth last column of V1) does not belong to this last block.

Consequently, σn+1 = σ
(α)
nα+1 = σ

(β)
nβ+1 and it has multiplicity q + e, where q ≡

qα + qβ is its left-, and e ≡ eα + eβ is its right-multiplicity. Since both [V
(l)
12 , V

(l)
13 ]

for l = α, β, have linearly dependent rows, [V11, V12] has linearly dependent rows as

well, i.e., rank([V11, V12]) < d. Finally, the composed problem is of the class S.
Case 2. Let σ

(α)
nα+1 > σ

(β)
nβ+1. Then the SVD of the extended matrix gives V with

much more complicated structure of V1. Here the relations between σ
(β)
1 , . . . , σ

(β)
nβ

and σ
(α)
nα+1 have to be taken into account. In particular there may be singular values

strictly larger than, equal to, and smaller than σ
(α)
nα+1. To reflect this, we introduce

the formal partitioning

V
(β)
11 = [V

(β)
11A , V

(β)
11B , V

(β)
11C ] ∈ R

dβ×(nβ−qβ)

without specifying the dimensions of the individual blocks. Then

V1 = RT

[
V

(α)
11 0 V

(α)
12 0 V

(α)
13 0 0 0

0 V
(β)
11A 0 V

(β)
11B 0 V

(β)
11C V

(β)
12 V

(β)
13

]


Ψ11

I

Ψ13



 ,

but the partitioning suggested by the vertical lines may not correspond to the parti-

tioning of V1 = [V11, V12, V13] with respect to σn+1. However, the number of columns

of the first suggested block is less than, or equal to n − qα − qβ . Since ql > 0, we

have n− qα − qβ < n+1 and thus the (n+1)st column of V1 is either in the second,

or in the third of the suggested blocks. The matrix [V12, V13] is then in general a

submatrix of the matrix formed by the last two suggested blocks.

Since [V
(α)
12 , V

(α)
13 ] has linearly dependent rows, the matrix formed by the last two

suggested blocks has linearly dependent rows, i.e., it is of the rank strictly smaller

than d. Therefore, any of its submatrices is of rank strictly smaller than d, and in

particular rank([V11, V12]) < d. Thus the composed problem is of class S. �

Table 2 of known available compositions of core problems (in terms of classes)

can now be complemented by a list of known unavailable compositions in Table 3,

see Corrolary 4.6 and Theorem 4.8. Both tables together indicate combinations that

require further investigation.
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⊞ F1 F2 F3 S
F1 — ⋆ sym. sym. sym.

F2 sym. sym.

F3 F1 and F2 F1 and F2 F1 and F2 sym.

S F1 and F2
⋆ F1 and F2 F1 and F2 F1, F2, and F3

⋆

Table 3. List of known unavailable compositions of two core problems (components) in
terms of classes. Stars (⋆) denote cases where all four possible results have been
analyzed (cf. Table 2). The table is symmetric.

5. Existence of irreducible core problems in various classes

All particular examples of core problems discussed in the previous sections (e.g.,

when filling up Table 2) have been composed from single right-hand side components.

However, in [2] it was shown that there exists an irreducible (nondecomposable) core

problem with d = 2 in F2. For completeness, we show by examples that there exist

irreducible core problems with d = 2 also in F1 and S. Recall that an F3 problem

with d = 2 does not exist, see Table 1.

E x am p l e 5.1. Consider three problems A11X1 ≈ B1, A11 ∈ R
4×2, B1 ∈ R

4×2

given in forms of SVDs of their extended matrices:

[B1, A11] = I4




4 0 0 0

0 3 0 0

0 0 2 0

0 0 0 1






1

3




−1 −3
√
3

√
3

3 −1
√
3 −

√
3√

3
√
3 1 3√

3 −
√
3 −3 1







T

,(5.1)

[B1, A11] = I4




3 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1






1

3




−1 −3
√
3

√
3

3 −1
√
3 −

√
3√

3
√
3 1 3√

3 −
√
3 −3 1







T

,(5.2)

[B1, A11] = I4




4 0 0 0

0 3 0 0

0 0 2 0

0 0 0 1






1

2




√
2

√
2 0 0

−1 1 −1 1

0 0
√
2

√
2

1 −1 −1 1







T

.(5.3)

The second problem has already been presented in [3] and [2], it is included for com-

pleteness. Note that the matrix of the left singular vectors may be chosen arbitrarily,

we use I4 for simplicity. The partitioning of the right-most matrices of the right sin-

gular vectors corresponds to (2.3). Clearly, the problems above belong to the class

F1, F2, and S, respectively.
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Now we show that they represent core problems. Since all three matrices [B1, A11]

are of full column rank, A11 and B1 are also of full column rank. Thus the problems

satisfy (CP1) and (CP2). Matrices A11 have simple singular values

ς1,2 =
1

2

√
25± 3

√
2, ς1,2 =

√

4± 3
√
5

8
, ς1,2 =

√

5±
√
2
√
59

4
,

respectively. It is easy to find their left and right singular vectors (e.g., by using

MATLAB with Symbolic Math Toolbox)2, and to verify that (CP3) is satisfied as

well. Consequently, all problems represent core problems with the SVD forms

(5.4)




b11 b12 ς1 0

b21 b22 0 ς2

b31 b32 0 0

b41 b42 0 0


 , ς1 > ς2 > 0,

where the only two free parameters (up to sign changes) are hidden in:

⊲ the transformation of the right-hand side B1 = B̃1G
T
R by some orthogonal matrix

GT
R = G−1

R ∈ R
2×2; and

⊲ the choice of the orthonormal basis (let it be stored in the columns of the ma-

trix U ′
3) of the two-dimensional N (AT

11), i.e., U
′
3 = Ũ ′

3G
T
L, G

T
L = G−1

L ∈ R
2×2.

Both of them involve the left bottom block of (5.4), in particular

(5.5)

[
b31 b32

b41 b42

]
= (U ′

3)
TB1 = GL((Ũ

′
3)

TB̃1)G
T
R.

It remains to show that the problems are irreducible. In general, if a core problem

is composed, its SVD form must be composable from SVD forms of its individual

components. Recalling that any single right-hand side component in the SVD form

has the right-hand side with all entries being nonzero (see [8]), the right-hand side of

a composed core problem in the SVD form (5.4) must be orthogonally transformable

to a chess-board-like pattern of zero and (strictly) nonzero blocks. Consequently,

if [B1, A11] is composed then there exist orthogonal matrices (elementary Givens

rotations)GL and GR transforming (5.5) to a chess-board structured (Ũ
′
3)

TB̃1. Since

(5.5) is of full row rank (see (CP3)), the only possibility is to (anti)diagonalize it.

But with diagonal (Ũ ′
3)

TB̃1, (5.5) in principle represents an SVD of

[
b31 b32

b41 b42

]

2 See for example the code included as supplementary material to [2]. MATLAB codes for
verification (by numerical and symbolic calculation) for all three problems are on request
freely available by the authors.
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Calculation of this SVD therefore fixes the free parameters represented by GL, GR.

Application of these matrices to the whole (5.4) then either reveals the chess-board

structure, if the problem is composed, or not, if it is irreducible. Now it is easy to

verify that neither of the three problem is composed.

There is no systematic method for the construction of irreducible core problems

with the given number of right-hand sides in the given class. However, the examples

above support the expectation that there exist irreducible core problems in all classes

for any d > 3.

6. Conclusions

In this paper, we have investigated solvability classes of core problems within linear

approximation problems with multiple observations. We have presented the full

solvability classification revealing that, in particular, the core problem with two right-

hand sides cannot be in the class F3. Then we have concentrated on the relations

between solvability classes while core problems composing. It has been shown that

any nongeneric (class S) problem can be moved to generic (class F3) by employing

a particular data correction represented by a composition with a single right-hand

side core problem. However, the TLS solution of the corrected problem still does

not exist. We have shown that the set of core problems without a TLS solution (i.e.,

F3∪S) is closed with respect to composing its elements with components from other
classes. Moreover, the set of core problems in the class S is closed with respect to
composing its elements together. Finally, we have presented examples of irreducible

core problems with two right-hand sides in all available classes.

The main results are summarized in Tables 1, 2, and 3. Results can be divided

into four types of assertions (C ∈ {F1,F2,F3,S}):

Existential (based on examples)

∃(CP, dα,F1)α, ∃(CP, dβ ,F1)β : (CP, dα,F1)α ⊞ (CP, dβ ,F1)β = (CP, dα+dβ,F1).

∃(CP, dα,F1)α, ∃(CP, dβ ,F1)β : (CP, dα,F1)α ⊞ (CP, dβ ,F1)β = (CP, dα+dβ,F2).

∃(CP, dα,F1)α, ∃(CP, dβ ,F1)β : (CP, dα,F1)α ⊞ (CP, dβ ,F1)β = (CP, dα+dβ,F3).

∃(CP, dα,F1)α, ∃(CP, dβ ,F1)β : (CP, dα,F1)α ⊞ (CP, dβ ,F1)β = (CP, dα+dβ,S).

Semi-general

∀(CP, dα, C)α, ∃(CP, 1,F1)β : (CP, dα, C)α ⊞ (CP, 1,F1)β = (CP, dα+1, C).
∀(CP, dα,S)α, ∃(CP, dβ ,F1)β : (CP, dα,S)α ⊞ (CP, dβ ,F1)β = (CP, dα+dβ ,F3).

General (positive)

∀(CP, dα, C)α: (CP, dα, C)α ⊞ (CP, dα, C)α = (CP, 2dα, C).
∀(CP, dα,S)α, ∀(CP, dβ ,S)β : (CP, dα,S)α ⊞ (CP, dβ ,S)β = (CP, dα+dβ,S).
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General (negative)

∀(CP, 1,F1)α, ∀(CP, 1,F1)β : (CP, 1,F1)α ⊞ (CP, 1,F1)β 6= (CP, 2,F3).

∀(CP, dα,F3)α, ∀(CP, dβ , C)β : (CP, dα,S)α ⊞ (CP, dβ , C)β 6= (CP, dα+dβ,F1).

∀(CP, dα,F3)α, ∀(CP, dβ , C)β : (CP, dα,S)α ⊞ (CP, dβ , C)β 6= (CP, dα+dβ,F2).

∀(CP, dα,S)α, ∀(CP, dβ , C)β: (CP, dα,S)α ⊞ (CP, dβ , C)β 6= (CP, dα+dβ,F1).

∀(CP, dα,S)α, ∀(CP, dβ , C)β: (CP, dα,S)α ⊞ (CP, dβ , C)β 6= (CP, dα+dβ,F2).

We see that the TLS solvability of a core problem is strongly influenced by compos-

ing, and till now, it is not clear how to detect the possible (ir)reducibility in general.

Therefore, understanding the properties of the composed problems is important for

the analysis and solution of TLS problems in general.
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6 Possible ways of matrix
right-hand side problem
generalization

In this part we present several ways of possible generalizations of matrix
right-hand side linear approximation problems as we have already outlined
in Chapter 2 and sketched in Figure 2.2. The directions of generalization (or
specialization when looking from bottom to top) can be seen in the following
scheme

Ax ≈ b where A ∈ Rm×n, x ∈ Rn, b ∈ Rm

↓
AX ≈ B where A ∈ Rm×n, X ∈ Rn×d, B ∈ Rm×d

↙ ↘
A×1 X ≈ B, ALXA

T
R ≈ B

{
A ∈ Rm×n, X ∈ Rn×d2×···×dk , B ∈ Rm×d2×···×dk

AL ∈ Rm×n, AR ∈ Rd×c, X ∈ Rn×c, B ∈ Rm×d

↘ ↙

(A1, A2, . . . , Ak | X ) ≈ B, where
{
As ∈ Rms×ns , for s = 1, 2, . . . , k,
X ∈ Rn1×n2×···×nk , B ∈ Rm1×m2×···×mk .

Namely, the problem with tensor right-hand side (third line left) is covered in
Chapter 7, the bilinear problemwith matrix right-hand side (third line right) is
covered in Chapter 8, and the most general multilinear (or k-linear) problem
with tensor right-hand side (fourth line) is covered in Chapter 9.

Note here that when working with tensors we use the notation estab-
lished in [13] and [14]. The above (in the third line) mentioned productAs×sX
of the matrix As = (ai,j) ∈ Rms×ns and the tensor X = (xi1,i2,...,ik) ∈ Rn1×n2×···×nk

in sth mode is defined as

(As ×s X )i1,...,is−1,i,is+1,...,ik =
∑ns

ℓ=1
ai,ℓ · xi1,...,is−1,ℓ,is+1,...,ik .

Then the other product (in the fourth line) of a tensor with more matrices of
suitable dimensions is defined analogously, and denoted

(A1, A2, . . . , Ak | X ) = A1 ×1 (A2 ×2 (· · · ×k−1 (Ak ×k X ) · · · )).

Each of Chapters 7–9 introduces the particular linear approximation prob-
lem including the formulation of TLS minimization, then introduces the core
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problem within, and the way how it was derived. We also point out impor-
tant properties of core problems and note on available results on solvability.
The results on this topic have already been published in a series of papers,
whose copies are included in the end of this part.
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7 Problem with tensor
right-hand side

The most straightforward way to generalize problems with vector and matrix
right-hand sides is by adding dimension. This means that there will be a
tensor on the right hand-side and therefore also a solution of the problemwill
be a tensor. Such problems arise in various applications such as 3D imaging
problems, time-dependent 2D problems, or models arising from linearization
of problems depending on several parameters; see for example [21], [18],
[22]. Results connected to this topic are published in [8]; see also the copy
enclosed on page 141.

7.1 Problem formulation and the
TLS minimization

First, we formulate the problem. By linear approximation problemwith tensor
right-hand side we mean

A×1 X ≈ B, A ∈ Rm×n, X ∈ Rn×d2×···×dk , B ∈ Rm×d2×...×dk ; (7.1)

see [8]. By solving such problem in the TLS sense we mean, analogously to
previous simpler cases (see Chapter 1), solving the minimization problem

min
G ∈ Rm×d2×···×dk

E ∈ Rm×n

(
∥G∥2 + ∥E∥2F

) 1
2

subject to ∃XTLS ∈ Rn×d2×···×dk : (A+ E)×1 XTLS = B + G.

(7.2)

We call it the TLS problem with tensor right-hand side. Note that we use the
tensor norm as it is defined in [14], i.e.,

∥G∥ ≡
( m∑

i1=1

d2∑
i2=1

· · ·
dk∑

ik=1

g2i1,i2,...,ik

) 1
2

,

which is a straightforward generalization of the 2-norm of a vector, or Frobe-
nius norm of a matrix.
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Remark3 (on TLS solvability). Let us define the matricization of a tensor T ∈
Rt1×···×tk in mode s— simply the matrix T {s} ∈ Rts×(∆T /ts), where ∆T ≡

∏k
ℓ=1 tℓ,

containing the s-mode fibres (the generalization of the concept of rows and
columns) of tensor T , as columns, in the inverse lexicographical order w.r.t.
their multi-indices; see [14]. Then, in particular

(As ×s X ){s} = AsX {s}, and ∥G∥ = ∥G{s}∥F ;

see [14]. Consequently, TLS minimization (7.2) can be fully re-formulated in
matrix fashion. Moreover, (7.2) is equivalent to

min
G ∈ Rm×d2×···×dk

E ∈ Rm×n

(
∥G∥2 + ∥E∥2F

) 1
2 subject to R

(
(B + G){1}

)
⊆ R(A+ E);

or even to

min
G ∈ Rm×(∆B/m)

E ∈ Rm×n

∥∥[ G E
]∥∥

F
subject to R

(
B{1} +G

)
⊆ R(A+ E);

see also [8]. Note that the last one is the very standard matrix right-hand
side TLS formulation (1.7). This allows to switch between the tensor and the
fully matricized formulations. Therefore, all the results on TLS solvability and
the whole TLS solvability analysis can be directly adopted from the matrix
to the tensor right-hand side case.

7.2 Core problem within A×1 X ≈ B
Since the TLS minimization (7.2) for the tensor right-hand side problem (7.1)
uses orthogonally invariant norms, we can apply an orthogonal transforma-
tion realized by (k + 1) orthogonal matrices

(P,Q,R2, . . . , Rk) ∈ Om ×On ×Od2 × · · · ×Odk ,

so the minimization in (7.2) stays unchanged. This transformation leads to
the modified problem

(P TAQ)×1 (Q
T, RT

2 , . . . , R
T
k | X ) ≈ (P T, RT

2 , . . . , R
T
k | B). (7.3)

The goal is to find such an orthogonal transformation that the modified
problem has a block diagonal structure (tensors illustrated as being of order
three for clarity)[

A11 0
0 A22

]
×1

�

�

�

�
X111 X121

X211 X221

X112 X122

X212 X222
≈

�

�

�

�
B1 0

0 0

0 0

0 0 . (7.4)
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The original problem is, therefore, partitioned into 2k subproblems, in partic-
ular,

A11 ×1 X11...1 ≈ B1, A11 ∈ Rm×n, X11...1 ∈ Rn×d2×···×dk , B1 ∈ Rm×d2×...×dk ,

and

A11 ×1 X1i2...ik ≈ 0, (i2, . . . , ik) ∈
(
{1, 2}k−1 \ (1, . . . , 1)

)
,

A22 ×1 X2j2...jk ≈ 0, (j2, . . . , jk) ∈ {1, 2}k−1.

The only subproblem we need to solve is the first one; the others obviously
have zero solutions. The first subproblem with minimal dimensions (among
all possible orthogonal transformations yielding this block structure) is called
the core problem; see [8].

7.3 Core problem reduction for
A×1 X ≈ B

The core problem reduction within the problem with the tensor right-hand
side was published in [8] (notation in the paper differs from the notation
here; we prefer simplicity in the paper, whereas consistency among indi-
vidual reductions here). It generalizes the procedure of the core problem
reduction for matrix right-hand side problems; see [6]. In the following text
we summarize four basic steps of the reduction:

• Right-hand side preprocessing (Section 7.3.1).
• Transformation of the system matrix (Section 7.3.2).
• Partitioning and transformation of the right-hand side (Section 7.3.3).
• Final permutation (Section 7.3.5).

The reduction uses the SVD of the system matrix A and the Tucker de-
composition (or HOSVD standing for the high-order SVD, which is a gener-
alization of SVD for tensors) of the tensor of the right-hand side B; see [23],
[24], [25]; we also refer to [14], where is a great review of the arithmetics
of tensors and tensor decompositions. The Tucker decomposition of the
right-hand side tensor B ∈ Rm×d2×···×dk takes full and economical forms

B =
(
R1, R2, . . . , Rk

∣∣diagk(BTC, 0m−r1,d2−r2,...,dk−rk)
)

=
(
R′

1, R
′
2, . . . , R

′
k

∣∣BTC ). (7.5)

Here
rs = rank(B{s}), s = 1, 2, . . . , k,

are ranks of individual s-mode matricizations. Matrices
R1 = [R′

1, R
′′
1] ∈ Om, R′

1 ∈ Rm×r1 ,

and Rs = [R′
s, R

′′
s ] ∈ Ods , R′

s ∈ Rds×rs , s = 2, . . . , k;
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moreover, allRs (i.e., s = 1, 2, . . . , k) are square orthogonal matrices of left sin-
gular vectors from the SVDs of B{s} and R′

s contain only vectors correspond-
ing to nonzero singular values. Finally, BTC is the so-called Tucker core, and
diagk realizes the block diagonal composition of the given two tensors of or-
der k along the k-dimensional diagonal. (Note that the term Tucker core is
not related to the core problem terminology.)

7.3.1 Preprocessing of a right-hand side
In the first step we use matrices Rs and R′

s from the Tucker decomposition
of tensor B (7.5) in order to transform the original problem (7.1) to

A×1

(
In, R

T
2 , . . . , R

T
k

∣∣X ) ≡ (A,RT
2 , . . . , R

T
k

∣∣X ) ≈ ( Im, RT
2 , . . . , R

T
k

∣∣B ). (7.6)

This allows us to split the original problem to 2k−1 subproblems. Only the
first subproblem has nonzero right-hand side — the Tucker core — and thus
needs to be solved, i.e.,

A×1 X ′ ≈ B′, (7.7)
where

B′ ≡
(
Im, R

′
2
T, . . . , R′

k
T ∣∣B ) =

(
R′

1, Ir2 , . . . , Irk
∣∣BTC ) ∈ Rm×r2×···×rk and

X ′ ≡
(
In, R

′
2
T, . . . , R′

k
T ∣∣X ) ∈ Rn×r2×···×rk .

The remaining (2k−1 − 1) problems have zero right-hand sides and therefore
also zero solutions. Matrices B′{s}, i.e., s-mode matricizations of the right-
hand side tensor B′ are of full row rank equal to rs having mutually orthogonal
rows for all s = 2, . . . , k, thanks to the Tucker decomposition.

7.3.2 Transformation of the systemmatrix
In the next stepwe aim to transform the systemmatrix to a simpler (diagonal)
form. We use the SVD of the matrix A, i.e.,

A = UΣV T, U ∈ Om, Σ ∈ Rm×n, V ∈ On.

Let A have ξ distinct nonzero singular values

σ1 > σ2 > · · · > σξ > 0,

and let µi, i = 1, . . . , ξ, be their multiplicities, i.e.,
ξ∑

i=1

µi = rank(A).

Further, denote

µξ+1 ≡ m− rank(A) = dim(N (AT)), νξ+1 ≡ n− rank(A) = dim(N (A)).
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Thus
Σ = diag

(
σ1Iµ1 , . . . , σξIµξ

, 0µξ+1, νξ+1

)
. (7.8)

The SVD is then used to transform problem (7.7) so that

(UTAV )×1 (V
T ×1 X ′) ≈ (UT ×1 B′),

Σ×1 Y ≈ F ,
(7.9)

with diagonal system matrix, and where

Y =V T ×1 X ′ =
(
V T, Ir2 , . . . , Irk

∣∣X ′ ) = (V T, R′
2
T, . . . , R′

k
T ∣∣X ) ∈ Rn×r2×···×rk ,

F =UT ×1 B′ =
(
UT, Ir2 , . . . , Irk

∣∣B′ ) = (UT, R′
2
T, . . . , R′

k
T ∣∣B ) ∈ Rm×r2×···×rk .

7.3.3 Partitioning and transformation of the right-hand side
In the next step we will transform the right-hand side while preserving the
already achieved diagonal structure of the system matrix. The goal of this
transformation is to get asmany zero blocks (in the form of whole zero fibres)
in the right-hand side tensor as possible. In order to do that, we consider
the following partitioning of F w.r.t. multiplicities of singular values of A, i.e.,

F{1} =


F1

...
Fξ

Fξ+1

 ∈ Rm×(∆F/m), where Fi ∈ Rµi×(∆F/m),

for i = 1, . . . , ξ, ξ + 1, and where ∆F = m ·
∏k

ℓ=2 rℓ. Recall that all the other
matricizations of tensor F , i.e.,

F{s} ∈ Rrs×(∆F/rs), s = 2, . . . , k,

are of full row rank equal to rs having mutually orthogonal rows (due to the
right-hand side preprocessing). Let

µi = rank(Fi)

and consider (semi-economical) SVDs

Fi = Li

[
Θi

0µi−µi,µi

]
W ′

i
T,

where
Li ∈ Oµi

, Θi ∈ Rµi×µi , W ′
i ∈ R(∆F/m)×µi ,

and where, in particular:

• Θi is diagonal invertible of order µi, and
• W ′

i have orthonormal columns, i.e., W ′
i
TW ′

i = Iµi
,
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for i = 1, . . . , ξ, ξ + 1.

Define orthogonal matrices

LU ≡ diag(L1, . . . , Lξ, Lξ+1) ∈ Om,

LV ≡ diag(L1, . . . , Lξ, Iνξ+1
) ∈ On,

Since (7.8), we get
LT
UΣLV = Σ,

so the problem (7.9) can be further transformed, while preserving diagonal
system matrices, to

(LT
UΣLV )×1 (L

T
V ×1 Y) ≈ (LT

U ×1 F),
Σ×1 Z ≈ H,

(7.10)

with diagonal system matrix, and where

Z =LT
V ×1 Y =

(
LT
V , Ir2 , . . . , Irk

∣∣Y ) ∈ Rn×r2×···×rk , and
H =LT

U ×1 F =
(
LT
U , Ir2 , . . . , Irk

∣∣F ) ∈ Rm×r2×···×rk .

7.3.4 Note on structure of the right-hand side
It would be useful to look at the structure of the new right-hand side of (7.10).
Clearly,

H{1} = (LT
U ×1 F){1} = LT

UF{1} =


LT

1F1

...
LT
ξFξ

LT
ξ+1Fξ+1

 ∈ Rm×(∆H/m)

has block-rows

LT
i Fi =

[
ΘiW

′
i
T

0µi−µi,∆F/m

]
≡
[

Hi

0µi−µi,∆F/m

]
∈ Rµi×(∆H/m),

with µi nonzero and mutually orthogonal rows (followed by µi−µi zero rows).
Consequently, since the full row rank matrix

Hi ∈ Rµi×(∆H/m)

is a block-row in 1-modematricization of tensorH, this tensor contains blocks

Hi ∈ Rµi×r2×···×rk , such that H{1}
i = Hi,

followed by zero blocks 0µi−µi,r2,...,rk , for i = 1, . . . , ξ, ξ + 1.
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7.3.5 Final permutation
Now we want to aggregate the relevant information revealed in the nonzero
blocks of the right-hand side H to get the block structure as in (7.4). To
achieve that we need to find permutation moving the nonzero block Hi, i.e.,
nonzero block-rows Hi ofH{1} up while moving the zero block-rows down. It
can be realized by the permutation matrix

ΠU ≡


[ Iµ1

0
] 0 0 [ 0

Iµ1−µ1
] 0 0

. . . ... . . . ...
0 [

Iµξ
0
] 0 0 [ 0

Iµξ−µξ

] 0

0 · · · 0 [
Iµξ+1

0
] 0 · · · 0 [ 0

Iµξ+1−µξ+1

]

 ∈ Om,

since

(ΠT
U ×1 H){1} =ΠT

UH{1}

=ΠT
U



[
H1

0µ1−µ1,∆H/m

]
...[
Hξ

0µξ−µξ,∆H/m

]
[

Hξ+1

0µξ+1−µξ+1,∆H/m

]


=


H1

...
Hξ

Hξ+1

0m−m,∆H/m

 ≡
[

B{1}
1

0m−m,∆H/m

]
,

where m =
∑ξ+1

i=1 µi. We see that we interpret the upper nonzero part of the
tensor (ΠT

U ×1 H) as
B1 ∈ Rm×r2×···×rk ,

i.e., the core problem right-hand side tensor; see (7.4).
The multiplication of the whole approximation problem Σ×1Z ≈ H by the

permutation matrix ΠT
U in the first mode, i.e., the application of ΠT

U from the
left on its 1-mode matricization ΣZ{1} ≈ H{1},

(ΠT
U ×1 (Σ×1 Z)){1} = ΠT

U(Σ×1 Z){1} = ΠT
U(ΣZ{1}) = (ΠT

UΣ)Z{1} ≈ ΠT
UH{1},

results in shuffling the diagonal structure of the system matrix Σ. In order
to keep the system matrices as much diagonal as possible — in particular
block-diagonal with diagonal blocks — we need another permutation matrix
that compensates the action of the first permutation as much as possible. It
is easy to see that such matrix is

ΠV ≡


[ Iµ1

0
] 0 [ 0

Iµ1−µ1
] 0 0

. . . . . . ...
0 [

Iµξ
0
] 0 [ 0

Iµξ−µξ

] 0

0 · · · 0 0 · · · 0 Iνξ+1

 ∈ On.
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Then

ΠT
U ΣΠV = diag

( A11︷ ︸︸ ︷
diag(σ1Iµ1

, . . . , σξIµξ
, 0µξ+1,0) ,

diag(σ1Iµ1−µ1
, . . . , σξIµξ−µξ

, 0µξ+1−µξ+1, νξ+1
)︸ ︷︷ ︸

A22

)
≡
[
A11 0
0 A22

] (7.11)

is the wanted block-diagonal structure; see (7.4).

7.3.6 Summary of the reduction
Let us summarize the whole reduction. Starting with (7.1) we proceed: right-
hand side preprocessing (7.7), transformation based on SVD of the system
matrix (7.9), right-hand side decomposition (7.10), and final permutation. In
total we get(

(ΠT
UL

T
UU

T)A (V LVΠV )
)
×1

(
(ΠT

VL
T
V V

T), RT
2 , . . . , R

T
k

∣∣X )
≈
(
(ΠT

UL
T
UU

T), RT
2 , . . . , R

T
k

∣∣B ),
i.e., [

A11 0
0 A22

]
×1 X̃ ≈ diagk(B1, 0m−m,d2−d2,...,dk−dk

),

the core problem revealing transformation (7.3), (7.4). Clearly,

P = ULUΠU , and Q = V LVΠV ,

and

m =

ξ+1∑
i=1

µi, n =

ξ∑
i=1

µi, and ds = rs, for s = 1, . . . , k.

The minimality of this construction is discussed in [8]; see also [6].

Remark 4. Note that the matrices Rs = [R′
s, R

′′
s ] originated in the right-hand

side preprocessing stay unchanged during the rest of the whole process.
However, till this moment we worked only with their parts R′

s; now we use
the whole orthogonal matrices. It was only in order simplify the exposition.
Using the parts causes the reduction of the right-hand side tensor while
omitting all the zero 1-mode fibres; these are, however, not influenced by
the first orthogonal matrix. Now we want to describe the whole orthogonal
transformation.
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7.4 Properties of core problem
within A×1 X ≈ B

The above described core problem reduction guarantees the following prop-
erties of the core problem

A11 ×1 X11...1 ≈ B1

within the linear approximation problemwith tensor right-hand side (see [8]):

∗(CP1) A11 ∈ Rm×n is of full column rank equal to n.
∗(CP2) B{s}

1 ∈ Rds×(∆B1
/ds) are of full row rank equal to ds, for s = 2, . . . , k.

∗(CP3) UT
i B

{1}
1 ∈ Rµi×(∆B1

/m) are of full row rank equal to µi, for i = 1, . . . , ξ, ξ +1.
(CP4) [B{1}

1 , A11] ∈ Rm×(n+∆B1
/m) is of full row rank equal to m.

Recall that we denote ∆B1 = m ·
∏k

ℓ=2 dℓ, and columns of Ui form the basis
of the ith left singular vector subspaces of A11 (including the null-space of
AT

11). Among the above listed properties of the core problem, the first three
asterisked are in fact equivalent to the minimality of such subproblem. Note
that the core problem has a bunch of further interesting properties; see in
particular [8] and also [11, Appendix A].

Remark 5 (on TLS solvability). Here we are in a very specific situation —
the TLS minimization for the tensor right-hand side problem is equivalent
to the TLS minimization of its matricized version; see Remark 3. Thus, we
may consider core problem reductions of both, the tensor problem and its
matricized counterpart, schematically:

A×1 X ≈ B
CPR−−−→ A11 ×1 X11···1 ≈ B1

(de)matricization ↕

AX ≈ B{1} ≡ B
CPR−−−→ A11X1 ≈ B1

Obviously, we can try to close the loop in this diagram and to consider two
matrix right-hand side problems:

• the matricized & then reduced [B1, A11],
• and the reduced & then matricized [B{1}

1 , A11],

and the straightforward question will be, whether both are the same.
First, from properties (CP1) and (CP3) of the matrix and of the tensor

right-hand side problems we easily get that both problems share the same
system matrix A11 (up to possible orthogonal transformation). However, the
right-hand sides are in general different. The reason is simple: the core
problem reduction in the tensor settings needs to keep the tensor structure
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of the right-hand side. In particular, it cannot reduce all the 1-mode fibres
of B to the linearly independent set of size d, because the total number of
remaining fibres needs to be the product of (k − 1) (rather general) natural
numbers dℓ, i.e., in general

d ≤
k∏

ℓ=2

dℓ.

Compare (CP2) properties for both core problems (we reformulate the first
one using transposition):

(CP2) BT
1 ∈ Rd×m is of full row rank equal to d.

(CP2) B{s}
1 ∈ Rds×(∆B1

/ds) are of full row rank equal to ds, for s = 2, . . . , k.

Comparing both transformations (1.11) and (7.3) we can immediately see that
both right-hand sides are the same (up to an orthogonal transformation)
when

R = Rk ⊗ · · · ⊗R2,

i.e., when the matrix R from the standard matrix core problem reduction has
this special so-called Kronecker product (denoted by ⊗) structure.
Consequently, in terms of ordering (see Chapters 4 and 5),

B1 ⊑ B{1}
1 , and

[
B1 A11

]
⊑
[
B{1}
1 A11

]
.

In other words, the tensor core problem A11 ×1 X11···1 ≈ B1 can be further re-
duced after matricization in general. Since the true (final) matrix core prob-
lem A11X1 ≈ B1 may belong to any of the TLS solvability classes F1, F2, F3,
and S (see [5], [4], and [10]), we presume the same behaviour of the tensor
right-hand side core problem in general.
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8 Bilinear problem with
matrix right-hand side

In some real applications problems with bilinear models naturally arise (see
[15] and [16] for the problem formulation and their application). Results con-
nected to this topic are published in [9]; see the copy enclosed on page 167.

8.1 Problem formulation and the
TLS minimization

Let us introduce the approximation problem with a bilinear model and matrix
right-hand side

ALXA
T
R ≈ B, AL ∈ Rm×n, AR ∈ Rd×c, X ∈ Rn×c, B ∈ Rm×d; (8.1)

see [9]. The TLS minimization can be generalized as follows

min
G ∈ Rm×d

EL ∈ Rm×n

ER ∈ Rd×c

∥∥∥∥[ G EL
ET
R 0

]∥∥∥∥
F

subject to ∃XTLS ∈ Rn×c : (AL + EL)XTLS (AR + ER)
T = (B +G),

(8.2)

see [9]. We call it the bilinear TLS problem with matrix right-hand side.

Remark 6 (on TLS solvability). In this case, even though there are no tensors
in the game and it is fully matrix formulated, the TLS solvability analysis for
the matrix right-hand side problems as presented in [5] cannot be simply
used. Some analogy or generalization of solvability classes F1, F2, F3, and
S, has not been studied yet (up to the knowledge of the author).
On the other hand, some results in this direction (however discussed from

the more practical computational point of view) are already presented in the
works [15] and [16].
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8.2 Core problem within ALXA
T
R ≈ B

Making use of the orthogonal invariance of the norm in the TLS minimization
(8.2), we can transform the problem (8.1) with four orthogonal matrices

(P,Q,R,K) ∈ Om ×On ×Oc ×Od

such that
(P TALQ) (Q

TXR) (RTAT
RK) ≈ (P TBK), (8.3)

and the minimization in (8.2) stays unchanged.
The goal is to find such orthogonal transformation yielding a block diag-

onal structure of the problem[
AL,11 0
0 AL,22

] [
X11 X12

X21 X22

] [
AR,11 0
0 AR,22

]T
≈
[
B1 0
0 0

]
. (8.4)

The original problem can be, therefore, partitioned into four subproblems, in
particular,

AL,11X11A
T
R,11 ≈ B1, AL,11 ∈ Rm×n, AR,11 ∈ Rd×c, X11 ∈ Rn×c, B1 ∈ Rm×d,

and
AL,11X12A

T
R,22 ≈ 0, AL,22X22A

T
R,22 ≈ 0, AL,22X21A

T
R,11 ≈ 0.

The only subproblem we need to solve is the first one; the other three ob-
viously have zero solutions. The first subproblem with minimal dimensions
(among all possible orthogonal transformations yielding this block structure)
is called the core problem; see [9].

8.3 Core problem reduction for
ALXA

T
R ≈ B

The core problem reduction within the bilinear problem with the matrix right-
hand side was published in [9] (notation in the paper differs from the no-
tation here; we prefer simplicity in the paper, whereas consistency among
individual reductions here). It generalizes the procedure of the core problem
reduction for matrix right-hand side problems; see [6]. The procedure now
consists of only three steps:

• Transformation of the system matrices (Section 8.3.1).
• Partitioning and transformation of the right-hand side (Section 8.3.2).
• Final permutation (Section 8.3.4).

The right-hand side preprocessing is not necessary here, it is done implicitly.
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8.3.1 Transformation of the systemmatrices
First, we want to transform the matrices AL and AR to the diagonal forms.
Therefore, we start with their SVDs, i.e.,

AL = ULΣV
T
L , UL ∈ Om, Σ ∈ Rm×n, VL ∈ On,

AR = URΨV
T
R , UR ∈ Od, Ψ ∈ Rd×c, VR ∈ Oc.

Let AL and AR have ξ and ζ distinct nonzero singular values, respectively,

σ1 > σ2 > · · · > σξ > 0, and ψ1 > ψ2 > · · · > ψζ > 0,

and let µi, i = 1, . . . , ξ, and δj, j = 1, . . . , ζ, be their multiplicities, respectively,
i.e.,

ξ∑
i=1

µi = rank(AL), and
ζ∑

j=1

δj = rank(AR).

Further, denote

µξ+1 ≡ m− rank(AL) = dim(N (AT
L)), νξ+1 ≡ n− rank(AL) = dim(N (AL)),

δζ+1 ≡ d− rank(AR) = dim(N (AT
R)), γζ+1 ≡ c− rank(AR) = dim(N (AR)).

Thus,

Σ = diag
(
σ1Iµ1 , . . . , σξIµξ

, 0µξ+1, νξ+1

)
,

Ψ = diag
(
ψ1Iδ1 , . . . , ψζIδζ , 0δζ+1,γζ+1

)
.

(8.5)

Using the SVDs, the problem (8.1) is transformed to

(UT
LALVL) (V

T
L XVR) (V

T
R A

T
RUR) ≈ (UT

LBUR),

ΣY ΨT ≈ F,
(8.6)

with diagonal system matrices, and where

Y = V T
L XVR ∈ Rn×c, and F = UT

LBUR ∈ Rm×d.

8.3.2 Partitioning and transformation of the right-hand side
In this step we want to preserve the achieved diagonal structure of system
matrices, but also get as many zero rows and columns in the right-hand side
as possible. In order to do that, we consider the partitioning of F w.r.t. mul-
tiplicities of singular values of AL and AR, i.e.,

F =


F1,1 · · · F1,ζ F1,ζ+1

... . . . ... ...
Fξ,1 · · · Fξ,ζ Fξ,ζ+1

Fξ+1,1 · · · Fξ+1,ζ Fξ+1,ζ+1

 ∈ Rm×d, where Fi,j ∈ Rµi×δj ,
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for i = 1, . . . , ξ, ξ + 1 and j = 1, . . . , ζ, ζ + 1. For simplicity we denote the
block-rows and block-columns

Fi,8 ≡
[
Fi,1, . . . , Fi,ζ , Fi,ζ+1

]
∈ Rµi×d, F

8,j ≡


F1,j

...
Fξ,j

Fξ+1,j

 ∈ Rm×δj .

Let
µi = rank(Fi,8) and δj = rank(F

8,j)

and consider (semi-economical) SVDs

Fi,8 = LL,i

[
ΘL,i

0µi−µi,µi

]
W ′T

L,i and F
8,j = W ′

R,j

[
ΘR,j 0δj ,δj−δj

]
LT
R,j,

where

LL,i ∈ Oµi
, ΘL,i ∈ Rµi×µi , W ′

L,i ∈ Rd×µi ,

LR,j ∈ Oδj , ΘR,j ∈ Rδj×δj , W ′
R,j ∈ Rm×δj ,

and where, in particular:

• ΘL,i, ΘR,j are diagonal invertible of order µi, δj, respectively, and
• W ′

L,i,W ′
R,j have orthonormal columns, i.e.,W ′T

L,iW
′
L,i = Iµi

,W ′T
R,jW

′
R,j = Iδj ,

for i = 1, . . . , ξ, ξ + 1 and j = 1, . . . , ζ, ζ + 1.
Define orthogonal matrices

LL,U ≡ diag(LL,1, . . . , LL,ξ, LL,ξ+1) ∈ Om,

LL,V ≡ diag(LL,1, . . . , LL,ξ, Iνξ+1
) ∈ On,

LR,U ≡ diag(LR,1, . . . , LR,ζ , LR,ζ+1) ∈ Od,

LR,V ≡ diag(LR,1, . . . , LR,ζ , Iγζ+1
) ∈ Oc.

Since (8.5), we have

LT
L,UΣLL,V = Σ and LT

R,UΨLR,V = Ψ.

Thus, with the use of these matrices the problem (8.6) can be further trans-
formed, while preserving diagonal system matrices, to

(LT
L,UΣLL,V ) (L

T
L,V Y LR,V ) (L

T
R,VΨ

TLR,U) ≈ (LT
L,UFLR,U),

ΣZ ΨT ≈ H,
(8.7)

with diagonal system matrices, and where

Z = LT
L,V Y LR,V ∈ Rn×c, and H = LT

L,UFLR,U ∈ Rm×d.
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8.3.3 Note on structure of the right-hand side

It would be useful to look at the structure of the new right-hand side of (8.7).
Clearly,

H = LT
L,UFLR,U =


LT
L,1F1,1LR,1 · · · LT

L,1F1,ζLR,ζ LT
L,1F1,ζ+1LR,ζ+1

... . . . ... ...
LT
L,ξFξ,1LR,1 · · · LT

L,ξFξ,ζLR,ζ LT
L,ξFξ,ζ+1LR,ζ+1

LT
L,ξ+1Fξ+1,1LR,1 · · · LT

L,ξ+1Fξ+1,ζLR,ζ LT
L,ξ+1Fξ+1,ζ+1LR,ζ+1


has block-rows and block-columns

LT
L,iFi,8LR,U =

[
ΘL,iW

′T
L,i

0µi−µi,d

]
LR,U , LT

L,UF8,jLR,j = LT
L,U

[
W ′

R,jΘR,j 0m,δj−δj

]
,

with µi nonzero and mutually orthogonal rows (followed by µi−µi zero rows),
and δj nonzero and mutually orthogonal columns (followed by δj − δj zero
columns), respectively. Thus

LT
L,iFi,jLR,j ≡

[
Hi,j 0µi,δj−δj

0µi−µi,δj
0µi−µi,δj−δj

]
, Hi,j ∈ Rµi×δj .

Moreover, note that block-rows and block-columns

[
Hi,1, . . . , Hi,ζ , Hi,ζ+1

]
∈ Rµi×(

∑ζ+1
j=1 δj),


H1,j

...
Hξ,j

Hξ+1,j

 ∈ R(
∑ξ+1

i=1 µi)×δj ,

are of full row rank, having mutually orthogonal rows for i = 1, . . . , ξ, ξ+1, and
of full column rank, having mutually orthogonal columns for j = 1, . . . , ζ, ζ+1.

8.3.4 Final permutation

Now we again want to aggregate the relevant information revealed in the
nonzero blocks of the right-hand side H. This can be done by a pair of per-
mutation matrices

ΠL,U ≡



[
Iµ1
0

]
0 0

[
0

Iµ1−µ1

]
0 0

. . . ... . . . ...
0

[
Iµξ
0

]
0 0

[
0

Iµξ−µξ

]
0

0 · · · 0
[
Iµξ+1

0

]
0 · · · 0

[
0

Iµξ+1−µξ+1

]

 ∈ Om,
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ΠR,U ≡



[
Iδ1
0

]
0 0

[
0

Iδ1−δ1

]
0 0

. . . ... . . . ...

0
[
Iδζ
0

]
0 0

[
0

Iδζ−δζ

]
0

0 · · · 0
[
Iδζ+1

0

]
0 · · · 0

[
0

Iδζ+1−δζ+1

]


∈ Od,

since

ΠT
L,UHΠR,U = ΠT

L,U



[
H1,1 0
0 0

]
· · ·

[
H1,ζ 0
0 0

] [
H1,ζ+1 0

0 0

]
... . . . ... ...[

Hξ,1 0
0 0

]
· · ·

[
Hξ,ζ 0
0 0

] [
Hξ,ζ+1 0

0 0

]
[
Hξ+1,1 0

0 0

]
· · ·

[
Hξ+1,ζ 0

0 0

] [
Hξ+1,ζ+1 0

0 0

]


ΠR,U

=


H1,1 · · · H1,ζ H1,ζ+1

... . . . ... ...
Hξ,1 · · · Hξ,ζ Hξ,ζ+1

Hξ+1,1 · · · Hξ+1,ζ Hξ+1,ζ+1

0m,d−d

0m−m,d−d 0m−m,d−d

 =

[
B1 0m,d−d

0m−m,d−d 0m−m,d−d

]
,

where m =
∑ξ+1

i=1 µi and d =
∑ζ+1

j=1 δj. We see that we interpret the leading
principle nonzero submatrix of (ΠT

L,UHΠR,U) as

B1 ∈ Rm×n,

i.e., the core problem right-hand side matrix; see (8.4).
Similarly as in the tensor right-hand side case (see Section 7.3.5), multi-

plication of the whole approximation problem by both permutation matrices

(ΠT
L,U Σ)Z (ΨTΠR,U) ≈ ΠT

L,UHΠR,U

results in shuffling the diagonal structure of the system matrices Σ and Ψ. In
order to get matrices in block-diagonal form with diagonal blocks we employ
two other permutation matrices

ΠL,V ≡


[
Iµ1
0

]
0

[
0

Iµ1−µ1

]
0 0

. . . . . . ...
0

[
Iµξ

0

]
0

[
0

Iµξ−µξ

]
0

0 · · · 0 0 · · · 0 Iνξ+1

 ∈ On,
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ΠR,V ≡



[
Iδ1
0

]
0

[
0

Iδ1−δ1

]
0 0

. . . . . . ...

0
[
Iδζ
0

]
0

[
0

Iδζ−δζ

]
0

0 · · · 0 0 · · · 0 Iγζ+1

 ∈ Oc.

Then, similarly as in (7.11),

ΠT
L,U ΣΠL,V ≡

[
AL,11 0
0 AL,22

]
, ΠT

R,U ΨΠR,V ≡
[
AR,11 0
0 AR,22

]
,

is the wanted block-diagonal structure; see (8.4).

8.3.5 Summary of the reduction
Let us summarize thewhole reduction. Starting with (8.1) we proceed: trans-
formation based on SVD of the system matrix (8.6), right-hand side decom-
position (8.7), and final permutation. In total we get(

(ΠT
L,UL

T
L,UU

T
L )AL (VLLL,VΠL,V )

)(
(ΠT

L,VL
T
L,V V

T
L )X (VRLR,VΠR,V )

)
(
(ΠT

R,VL
T
R,V V

T
R )A

T
R (URLR,UΠR,U)

)
≈
(
(ΠT

L,UL
T
L,UU

T
L )B (URLR,UΠR,U)

)
,

i.e., [
AL,11 0
0 AL,22

]
X̃

[
AR,11 0
0 AR,22

]T
≈
[
B1 0
0 0

]
,

the core problem revealing transformation (8.3), (8.4). Clearly,

P = ULLL,UΠL,U , Q = VLLL,VΠL,V , R = VRLR,VΠR,V , and K = URLR,UΠR,U ,

and

m =

ξ+1∑
i=1

µi, n =

ξ∑
i=1

µi, d =

ζ+1∑
j=1

δj, and c =

ζ∑
j=1

δj.

The minimality of this construction is discussed in [9]; see also [6].

8.4 Properties of core problem
within ALXA

T
R ≈ B

The above described core problem reduction guarantees the following prop-
erties of the core problem

AL,11X11A
T
R,11 ≈ B1

within the bilinear problem with matrix right-hand side (see [9]):
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∗(CP1) AL,11 ∈ Rm×n is of full column rank equal to n, and
AR,11 ∈ Rd×c is of full column rank equal to c.

∗(CP2) B1UR,j ∈ Rm×δj are of full column rank equal to δj, for j = 1, . . . , ζ, ζ + 1.
∗(CP3) UT

L,iB1 ∈ Rµi×d are of full row rank equal to µi, for i = 1, . . . , ξ, ξ + 1.

(CP4) [B1, AL,11] ∈ Rm×(n+d) is of full row rank equal to m, and
[BT

1 , AR,11] ∈ Rd×(c+m) is of full row rank equal d.

Columns of UL,i form the basis of the ith left singular vector subspaces of
AL,11 (including the null-space of AT

L,11), and columns of UR,j form the basis
of the jth left singular vector subspaces of AR,11 (including the null-space of
AT
R,11). Three properties which are asterisked are again in fact equivalent to

the minimality of such subproblem. For more interesting properties of the
core problem see in particular [9] and [11, Appendix A].

Remark 7 (on TLS solvability). The bilinear (core) problem with matrix right-
hand side is a matrix approximation problem (there are no tensors of higher
orders), however, the TLS theory for such problems is (up to the knowl-
edge of the author) not done yet; see also Remark 6. Consequently, we do
not know whether such core problem does or does not have the (possibly
unique) TLS solution. TLS solvability is analyzed only (i) for d = c = 1— the
vector right-hand side problems (see [2], [20]); and (ii) for d = c with AR = Id
and with fixed ER = 0d,d — the matrix right-hand side problems (see [28],
[5]).
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9 Multilinear (or k-linear)
problem with tensor
right-hand side

The most general variant of linear approximation problems can be achieved
by the combination of the two preceding cases, where there is a tensor right-
hand side and multilinear mapping. This yields in the k-linear problem with
tensor right-hand side. Related results have been recently published in [11];
see also the enclosed copy on page 187.

9.1 Problem formulation and the
TLS minimization

By the k-linear approximation problem we understand

(A1, . . . , Ak | X ) ≈ B, As ∈ Rms×ns , X ∈ Rn1×···×nk , B ∈ Rm1×···×mk , (9.1)

where s = 1, . . . , k; see [11]. By solving such problem in the TLS sense, i.e., by
the TLS method, we understand solving the following minimization problem

min
G ∈ Rm1×···×mk

E1 ∈ Rm1×n1

...
Ek ∈ Rmk×nk

(
∥G∥2 +

∑k

s=1
∥Es∥2F

) 1
2

subject to ∃XTLS ∈ Rn1×···×nk : (A1 + E1, . . . , Ak + Ek | XTLS) = B + G.

(9.2)

We call it the k-linear TLS problem with tensor right-hand side.

Remark 8 (on TLS solvability). Similarly to the bilinear case (see Remark
6), results on TLS solvability generalizing the classification from [5] are not
known to the author. The question of TLS solvability of bilinear and k-linear
TLS problems remains open. It is, however, out of the scope of this thesis.
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9.2 Core problem within
(A1, . . . , Ak | X ) ≈ B

When we want to extract the core problem within k-linear problem (9.1), we
again seek for orthogonal transformation, now realized by 2k orthogonal ma-
trices

(P1, Q1, . . . , Pk, Qk) ∈ Om1 ×On1 × · · · ×Omk
×Onk

.

The corresponding TLS minimization stays unchanged under transformation(
P T
1 A1Q1 , . . . , P

T
k AkQk

∣∣∣ (QT
1 , . . . , Q

T
k | X )

)
≈ (P T

1 , . . . , P
T
k | B) (9.3)

due to the orthogonal invariance of the employed norms.
The goal is to find such orthogonal transformation yielding a block diag-

onal structure of the problem (tensors illustrated as being of order three for
clarity)([

A1,11 0
0 A1,22

]
, . . . ,

[
Ak,11 0
0 Ak,22

] ∣∣∣∣∣
�

�

�

�
X111 X121

X211 X221

X112 X122

X212 X222

)
≈

�

�

�

�
B1 0

0 0

0 0

0 0 . (9.4)

The original problem is, therefore, partitioned into 2k subproblems, in partic-
ular,

(A1,11, . . . , Ak,11 | X1...1) ≈ B1, As,11 ∈ Rms×ns , X11...1 ∈ Rn1×···×nk , B1 ∈ Rm1×...×mk ,

where s = 1, . . . , k, and

(A1,i1i1 , . . . , Ak,ikik | Xi1...ik) ≈ 0, (i1, . . . , ik) ∈
(
{1, 2}k \ (1, . . . , 1)

)
.

The only subproblem we need to solve is the first one; the others obviously
have zero solutions. The first subproblem with minimal dimensions (among
all possible orthogonal transformations yielding this block structure) is called
the core problem; see [11].

9.3 Core problem reduction for
(A1, . . . , Ak | X ) ≈ B

In this section we summarize the process of core problem reduction for the
multilinear problem with tensor right-hand side. This reduction was already
published in [11] (notation in the paper differs from the notation here; we pre-
fer simplicity in the paper, whereas consistency among individual reductions
here). It generalizes the procedure of the core problem reductions published
in [8] (see Section 7.3) and in [9] (see Section 8.3). The procedure again con-
sists of three steps:
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• Transformation of the system matrices (Section 9.3.1).
• Partitioning and transformation of the right-hand side (Section 9.3.2).
• Final permutation (Section 9.3.4).

The right-hand side preprocessing is again done implicitly.

9.3.1 Transformation of the systemmatrices
Similarly to the bilinear problem, we start with SVDs of all system matrices
and we transform them into diagonal forms, i.e.,

As = UsΣsV
T
s , Us ∈ Oms , Σs ∈ Rms×ns , V ∈ Ons , for s = 1, . . . , k.

Let As have ξs distinct nonzero singular values

σs,1 > σs,2 > · · · > σs,ξs > 0,

and let µs,is, is = 1, . . . , ξs, be their multiplicities, i.e.,

ξs∑
is=1

µs,is = rank(As).

Further denote

µs,ξs+1 ≡ ms − rank(As) = dim(N (AT
s )), νs,ξs+1 ≡ ns − rank(As) = dim(N (As)).

Thus

Σs = diag
(
σs,1Iµs,1 , . . . , σs,ξsIµs,ξs

, 0µs,ξs+1, νs,ξs+1

)
, for s = 1, . . . , k. (9.5)

Employing these SVDs, the original problem (9.1) is transformed to(
UT
1 A1V1, . . . , U

T
kAkVk

∣∣∣ (V T
1 , . . . , V

T
k

∣∣X ) ) ≈ (UT
1 , . . . , U

T
k

∣∣B ),(
Σ1, . . . ,Σk

∣∣Y ) ≈ F , (9.6)

with diagonal system matrices, and where

Y =
(
V T
1 , . . . , V

T
k

∣∣X ) ∈ Rn1×···×nk , and
F =

(
UT
1 , . . . , U

T
k

∣∣B ) ∈ Rm1×···×mk .

9.3.2 Partitioning and transformation of the right-hand side
In this step we again want to transform the right-hand side tensor such that:
we preserve the achieved diagonal structure of systemmatrices, andwe also
get as many zero blocks (in the form of whole zero fibres) in the right-hand
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side tensor as possible. In order to do that, we consider the partitioning of
F w.r.t. multiplicities of singular values of As, i.e.,

F{s} =


Fs,1

...
Fs,ξs

Fs,ξs+1

 ∈ Rms×(∆F/ms), where Fs,is ∈ Rµs,is×(∆F/ms),

for is = 1, . . . , ξs, ξs + 1 and s = 1, . . . , k, and where ∆F =
∏k

ℓ=1mℓ. Tensor F is,
therefore, partitioned into a grid of

(ξ1 + 1)× · · · × (ξk + 1)

sub-tensors
Fi1,··· ,ik ∈ Rµ1,i1

×···×µk,ik ,

for is = 1, . . . , ξs, ξs + 1 and s = 1, . . . , k. (Matrix Fs,is contains s-mode fibres of
all sub-tensors Fi1,··· ,ik with the sth index fixed to the value is, sorted in the
inverse lexicographical order w.r.t. their multi-indices.) Let

µs,is = rank(Fs,is)

and consider (semi-economical) SVDs

Fs,is = Ls,is

[
Θs,is

0µs,is−µs,is
,µs,is

]
W ′T

s,is ,

where
Ls,is ∈ Oµis

, Θs,is ∈ Rµs,is
×µs,is , W ′

s,is ∈ R(∆F/ms)×µs,is ,

and where, in particular:
• Θs,is are diagonal invertible of order µs,is, and
• W ′

s,is have orthonormal columns, i.e., W ′T
s,isW

′
s,is = Iµs,is

,
for is = 1, . . . , ξs, ξs + 1 and s = 1, . . . , k.

Define orthogonal matrices
Ls,U ≡ diag(Ls,1, . . . , Ls,ξs , Ls,ξs+1) ∈ Oms ,

Ls,V ≡ diag(Ls,1, . . . , Ls,ξs , Iνs,ξs+1
) ∈ Ons ,

Since (9.5),
LT

s,U Σs Ls,V = Σs, for s = 1, . . . , k,

the problem (9.6) can be further transformed, while preserving diagonal sys-
tem matrices to(
LT

1,UΣ1L1,V , . . . , L
T
k,UΣkLk,V

∣∣∣ (LT
1,V , . . . , L

T
k,V

∣∣Y )) ≈ (LT
1,U , . . . , L

T
k,U

∣∣F ),(
Σ1, . . . ,Σk

∣∣Z ) ≈ H, (9.7)

with diagonal system matrices, and where
Z =

(
LT
1,V , . . . , L

T
k,V

∣∣Y ) ∈ Rn1×···×nk , and
H =

(
LT
1,U , . . . , L

T
k,U

∣∣F ) ∈ Rm1×···×mk .

134



9.3.3 Note on structure of the right-hand side

It would be useful to look at the structure of the new right-hand side of (9.7).
Employing the s-mode matricization (see [14]), we get

H{s} = LT
s,U F{s}

(
(Lk,U ⊗ · · · ⊗ Ls+1,U)⊗ (Ls−1,U ⊗ · · · ⊗ L1,U)

)
︸ ︷︷ ︸

Λs ∈ O∆F/ms

=


LT
s,1Fs,1

...
LT
s,ξs
Fs,ξs

LT
s,ξs+1Fs,ξs+1

Λs,

where ⊗ is the Kronecker product. This matricization has block-rows of the
form

LT
s,isFs,is =

[
Θs,isW

′T
s,is

0µs,is−µs,is
,∆F/ms

]
Λs

with µs,is nonzero and mutually orthogonal rows (followed by µs,is − µs,is zero
rows), for all s = 1, . . . , k. In terms of the grid of sub-tensors we get(

LT
1,i1
, . . . , LT

k,ik

∣∣Fi1,··· ,ik
)
≡ diagk(Hi1,··· ,ik , 0µ1,i1

−µ1,i1
,...,µk,ik

−µk,ik
),

where
Hi1,··· ,ik ∈ Rµ1,i1

×···×µk,ik .

Moreover, note that a matrix formed as block-row of s-mode matriciza-
tions of all Hi1,··· ,ik tensors with the given fixed value is of the sth index is
of full row rank equal to µs,is having mutually orthogonal rows, for all is =
1, . . . , ξs, ξs + 1 and s = 1, . . . , k.

9.3.4 Final permutation

Similarly as in previous two cases (see Sections 7.3.5 and 8.3.4). Tensor H
(of dimensions ×k

s=1ms) consists of the regular grid of sub-tensor (of dimen-
sions ×k

s=1µs,js) with nonzero leading principal parts Hi1,··· ,ik (of dimensions
×k

s=1µs,js); illustration for s = 3:

(
LT
1,i1
, LT

2,i2
, LT

3,i3

∣∣Fi1,i2,i3

)
=

�

�

�

�
Hi1,i2,i3 0

0 0

0 0

0 0 .

The final step collects all the blocks Hi1,··· ,ik together in the leading principal
corner of the whole tensor, while forming B1 there. It is again realized by
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permutation matrices Πs,U ≡

[
Iµs,1

0

]
0 0

[
0

Iµs,1−µs,1

]
0 0

. . . ... . . . ...
0

[
Iµs,ξs

0

]
0 0

[
0

Iµs,ξs−µs,ξs

]
0

0 · · · 0
[
Iµs,ξs+1

0

]
0 · · · 0

[
0

Iµs,ξs+1−µs,ξs+1

]


of order ms, for s = 1, . . . , k. Then(

ΠT
1,U , . . . ,Π

T
kk,U

∣∣H ) = diagk(B1 , 0m1−m1,...,mk−mk
),

where ms =
∑ξs+1

is=1 µs,is . The leading principal block

B1 ∈ Rm1×···×mk

is the core problem right-hand side tensor; see (9.4).
Application of all these permutations on thewhole approximation problem

again shuffle diagonality of all systemmatrices Σs. Their structure cannot be
fully restored in general, but they can be permuted into block-diagonal form
with diagonal blocks — again by employing permutation matrices

Πs,V ≡



[
Iµs,1

0

]
0

[
0

Iµs,1−µs,1

]
0 0

. . . . . . ...
0

[
Iµs,ξs

0

]
0

[
0

Iµs,ξs−µs,ξs

]
0

0 · · · 0 0 · · · 0 Iνs,ξs+1

 ∈ Ons .

Then similarly as in (7.11)

ΠT
s,U ΣsΠs,V ≡

[
As,11 0
0 As,22

]
is the wanted block-diagonal structure; see (9.4).

9.3.5 Summary of the reduction
Let us summarize thewhole reduction. Starting with (9.1) we proceed: trans-
formation based on SVD of the system matrix (9.6), right-hand side decom-
position (9.7), and final permutation. In total we get(
(ΠT

1,UL
T
1,UU

T
1 )A1 (V1L1,VΠ1,V ) , . . . , (Π

T
k,UL

T
k,UU

T
k )Ak (VkLk,VΠk,V )

∣∣∣∣(
(ΠT

1,VL
T
1,V V

T
1 ) , . . . , (Π

T
k,V L

T
k,V V

T
k )
∣∣∣X )) ≈ ( (ΠT

1,UL
T
1,UU

T
1 ) , . . . , (Π

T
k,UL

T
k,UU

T
k )
∣∣∣B )
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i.e.,([
A1,11 0
0 A1,22

]
, . . . ,

[
Ak,11 0
0 Ak,22

] ∣∣∣∣∣ X̃
)
≈ diagk(B1, 0m1−m1,...,mk−mk

),

the core problem revealing transformation (9.3), (9.4). Clearly,

Ps = UsLs,UΠs,U , and Qs = VsLs,VΠs,V , for s = 1, . . . , k,

and

ms =

ξs+1∑
is=1

µs,is , and ns =

ξs∑
is=1

µs,is , for s = 1, . . . , k.

The minimality of this construction is discussed in [11]; see also [6].

9.4 Properties of core problem
within (A1, . . . , Ak | X ) ≈ B

The procedure of the core problem reduction again guarantees the proper-
ties of core problem

(A1,11, . . . , Ak,11 | X1...1) ≈ B1,

within k-linear problem with tensor right-hand side (see [11]), for s = 1, . . . , k:

∗(CP1) As,11 ∈ Rms×ns are of full column rank equal to ns.

∗(CP2–3) UT
s,isB

{s}
1 ∈ Rµs,is

×(∆B1
/ms) are of full row rank µs,is, for is = 1, . . . , ξs, ξs + 1.

(CP4) [B{s}
1 , As,11] ∈ Rms×(ns+∆B1

/ms) are of full row rank equal to ms.

Recall that ∆B1 =
∏k

ℓ=1mℓ, and columns of Us,is form the basis of the isth left
singular vector subspaces of As,11 (including the null-space of AT

s,11). Again,
the two asterisked properties are equivalent to the minimality of such sub-
problem. For further properties of this core problem see in particular [11].

Remark 9 (on TLS solvability). Discussion about potential TLS solvability of
such core problem is fully open, since the TLS theory for multilinear approxi-
mation problem is (up to the knowledge of the author) not done yet; see also
Remark 8. It is done only (i) for k = 1 (or equivalently d2 = · · · = dk = 1) — the
vector right-hand side problems (see [2], [20]); and (ii) for k = 2 (or equiva-
lently d3 = · · · = dk = 1) with m2 = n2, A2 = In2, and with fixed E2 = 0n2,n2 —
the matrix right-hand side problems (see [28], [5]).
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sides. Finally, relations between the matrix and tensor core 
problem are discussed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let U and V be finite-dimensional linear (vector) spaces over the same field F. Typ-
ically U and V are spaces of column vectors or matrices over the field of real (R) or 
complex (C) numbers. Let A ∈ L (U , V ) be a linear mapping, A ∶ U �→ V , with the 
range R(A) ⊆ V . Consider the approximation problem

A(x) ≈ b, where x ∈ U , b ∈ V (1.1)

are the unknown vector and the right-hand side (observation) vector, respectively. As-
sume that b ∉ R(A), i.e., the problem does not have a solution in the classical meaning. 
If the data A and/or b are contaminated by errors, various data correction techniques 
are used to solve (1.1). The total least squares (TLS) approach is very general, since it 
allows for corrections in both A and b by seeking for a perturbation (or correction) g of 
the right-hand side b, and for a perturbation (or correction) E of the mapping A so that

min
g∈V

E∈E⊆L (U ,V )

∥(g,E)∥☆ subject to (A + E)(x) = b + g, (1.2)

where ∥ ⋅ ∥☆ denotes some norm in V × L (U , V ), and (A + E)(x) ≡ A(x) + E(x). 
Note that E , the search set for the mapping perturbation E , is either the whole space 
L (U , V ), or its proper subspace (or submanifold) depending on the problem (1.1). Any 
vector x which solves the perturbed problem (1.2) is called the TLS solution. In the case 
that the TLS solution is not unique, we are often interested in the solution minimal with 
respect to some norm ∥ ⋅ ∥◇ in U .

The TLS (and also closely related orthogonal regression and errors-in-variables model-
ing) has been widely used to solve problems (1.1) in two most common forms: The single
and multiple right-hand side problems, where b is either a column vector or a matrix, and 
A is a matrix; see for example [35, Chap. 1], [33], or [34]. It is well known that even in the 
single right-hand side case the TLS problem may not have a solution; see the analysis 
in [4], [35] and also [5, Chap. 6.3]. The so-called core problem theory introduced in [21]
provided an alternative view on TLS problems by showing how redundant and irrelevant 
data can be removed from A and b. This allowed to clarify why TLS problems may not 
have a solution and what is the meaning of the nongeneric solutions defined in [35]. The 
solvability analysis of the multiple (matrix) right-hand side case started in [35] has been 
complemented in [7]. Recently, also generalization of the core problem theory has been 
derived in a sequence of papers [9], [10], [6]. However, many questions still remain open.
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In many practical cases the problem underlying (1.1) (and therefore also its solu-
tion) depends on one or more parameters that impose some further structure into the 
data; see for example [23] where the mapping depends on a vector of parameters, or 
[18] where the right-hand side depends on time. TLS problems originated in noise and 
error-contaminated dynamical systems (see [25]) naturally depend on time; dynamical 
systems depending on more parameters can be found, e.g., in the Oberwolfach collection 
[16]. Assume the simplest case, where the right-hand side vector b depends on several 
(let say k − 1) parameters λ2, λ3, . . . , λk. Each of the parameters λj is sampled in some 
region of interest to dj samples and we have in hands the observation b on the regular 
Cartesian grid of these samples. If b is an m-vector, the whole set of observations form 
a k-way tensor B, a hyperblock of entries of dimensions m ×d2 ×⋯ × dk; see for example 
[13] or [12] for the same approach in a different context. This yields naturally a problem 
(1.1) of the form

A(X) ≡ A ×1 X ≈ B, (1.3)

where A is a matrix, X and B are tensors of unknowns and right-hand sides, respectively, 
and “×1” stands for a matrix-tensor product that will be specified later in section 3.1; 
see (3.2). (Note that, for a general linear approximation problem A(X) ≈ B the mapping 
may also be a tensor of appropriate dimensions; analysis of this general case is however 
out of the scope of this paper and will be presented elsewhere.) The problem (1.3) can 
be trivially reshaped (matricized) into a matrix problem, and solved by standard matrix 
methods including the TLS. However, in this paper we show mathematically that leaving 
the tensor structure (imposed by the parameters) of the data may not be appropriate.

Overview of our contributions: We formulate the TLS minimization within (1.3) in 
a tensor form. We show that although the basic TLS solvability results can then be 
obtained directly by matricization of (1.3), this is not true for the core problem repre-
senting the necessary and sufficient information within (1.3). By employing the so-called 
Tucker decomposition of the right-hand side tensor B, we prove that there always exists 
the tensor shaped core problem that preserves the imposed structure. We develop an ex-
plicit unitary transformation revealing this tensor core problem. Then we show that the 
tensor core problem is in general different from its counterpart obtained from the matri-
cization of (1.3). Finally, the results are extended to problems with even more structured 
right-hand sides called the coupled TLS problems. This formulation could be appropriate 
for example when the observations are not available for the full Cartesian grid, and the 
missing columns are avoided, e.g., by cutting the incomplete hyperblock into some set 
of its mutually disjoint subtensors. Presented results may be useful in solving of approx-
imation problems with structured right-hand sides, where the least squares techniques 
are heavily employed (see, e.g., [27]). Since the introduced tensor formulation covers also 
the formulations analyzed previously, we believe it can help with understanding of some 
of the open questions related to standard TLS problems.
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The organization of the paper is the following. Section 2 briefly summarizes the clas-
sical (vector and matrix right-hand side) TLS formulations. Section 3 recalls some basic 
definitions related to tensors. Section 4 introduces the tensor right-hand side TLS prob-
lem and derives the tensorized core reduction while proving the existence and uniqueness 
of the obtained core problem. Section 5 generalizes the results to the coupled TLS 
problem—a set of several problems with the same matrix A and different tensor right-
hand sides. Section 6 compares the ordinary and tensor core problem. Section 7 concludes 
the paper.

Throughout the paper I� (or just I) denotes an � ×� identity matrix and e(�)i (or just ei) 
its ith column; 0�,ξ (or just 0) denotes an � × ξ zero matrix; and MT, M∗ ≡MT, R(M), 
and N (M) denote the transposition, the Hermitian conjugation, the range, and the 
null-space of a matrix M , respectively. Further, M ⊗K denotes the Kronecker product 
of matrices where mi,j , the (i, j)th entry of M is replaced by the block mi,jK.

2. Classical TLS formulations

In the classical setting, the mapping A is represented by a (generally rectangular) ma-
trix A called the system (or model) matrix. We consider two cases of problems depending 
on the number of observations being available for this model.

2.1. Single right-hand side problem

The simplest case of (1.1) is the single right-hand side problem of the form

Ax ≈ b, or, equivalently, [b,A] [ −1
x
] ≈ 0, (2.1)

where A ∈ Fm×n, x ∈ Fn, and b ∈ Fm. Here (1.2) is typically considered as

min
g∈Fm

E∈Fm×n

∥[g,E]∥F subject to (A +E)x = b + g, (2.2)

i.e., the correction matrix [g, E] is minimized in the Frobenius norm.
Golub and Van Loan gave the sufficient condition for the existence of the unique TLS 

solution of (2.1)–(2.2) in [4]. Van Huffel and Vandewalle further extended the analysis 
and obtained the necessary and sufficient condition for the existence of any (possibly 
nonunique) TLS solution. They also introduced the concept of the nongeneric solution 
for the case when the TLS solution does not exist; see [35, Chap. 3].

The analysis was complemented by the so-called core problem transformation in [19], 
[20], and in particular [21]. Since the Frobenius norm in (2.2) is unitarily invariant, the 
original problem (2.1) can be transformed to

Âx̂ ≡ (P ∗AQ)(Q∗x) ≈ (P ∗b) ≡ b̂, (2.3)
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where P −1 = P ∗, Q−1 = Q∗ are unitary matrices; or, equivalently,

[̂b, Â] [ −1
x̂
] ≡

⎛
⎝
P ∗[b,A] [ 1 0

0 Q
]
⎞
⎠
⎛
⎝
[ 1 0

0 Q∗
] [ −1

x
]
⎞
⎠
≈ 0. (2.4)

Paige and Strakoš showed in [21] that there always exist P and Q giving

[̂b, Â] = P ∗[b,A] [ 1 0
0 Q

] ≡ [ b1 A11 0
0 0 A22

] , (2.5)

where [b1, A11] has minimal and A22 maximal dimensions over all unitary transfor-
mations yielding the block structure (2.5). Combining (2.4) and (2.5), together with 
conformal partitioning of x̂ = [x1

x2
], the original problem splits into two independent 

subproblems

A11x1 ≈ b1 and A22x2 ≈ 0, (2.6)

where only the first needs to be solved, since x2 = 0.
The first problem A11x1 ≈ b1 is called the core problem. It is given uniquely (up to 

an unitary transformation) and it has several interesting properties; see [21]. First of all, 
the core problem always has the unique TLS solution. Moreover, its back-transformation

x = Qx̂ = Q [ x1
0 ] (2.7)

represents either the unique TLS solution of (2.1) if it exists, or the minimum norm TLS 
solution if (2.1) has more than one TLS solutions, or the (minimum norm) nongeneric 
solution if (2.1) does not have a TLS solution. In this way, the core problem reduction 
allows to extract the necessary and sufficient information for solving the original problem 
into a typically smaller core problem. The core problem concept also helps to explain 
the meaning of the nongeneric solution; see [21].

2.2. Multiple right-hand side problem

In the case that multiple observations are available, (1.1) takes the form of the multiple 
right-hand side problem

AX ≈ B, or, equivalently, [B,A] [ −Id
X

] ≈ 0, (2.8)

where A ∈ Fm×n, X ∈ Fn×d, and B ∈ Fm×d. Here (1.2) becomes
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min
G∈Fm×d

E∈Fm×n

∥[G,E]∥F subject to (A +E)X = B +G, (2.9)

i.e., the correction matrix [G, E] is minimized in the Frobenius norm.
Such approach was studied by Van Huffel (see [31], [32]), Van Huffel and Vandewalle 

(see [35, Chap. 3]), Wei (see [38] and [39]), and many others. The necessary and sufficient 
condition for the existence of the TLS solution of (2.8)–(2.9) was given in [7]; see also 
[8] and [11].

The generalization of the core problem concept was then derived in the series of papers 
[9], [10], and [6] (see also the first attempts in [1], [2], [24], and [22]). Since the norm 
used in (2.9) is unitarily invariant, the original problem (2.8) can be transformed to

ÂX̂ ≡ (P ∗AQ)(Q∗XR) ≈ (P ∗BR) ≡ B̂, (2.10)

where P −1 = P ∗, Q−1 = Q∗, R−1 = R∗ are unitary matrices. In [9] it has been shown, that 
there always exist P , Q, and R giving

[B̂, Â] = P ∗[B,A] [R 0
0 Q

] ≡ [B1 0 A11 0
0 0 0 A22

] , (2.11)

where [B1, A11] has minimal and A22 maximal dimensions over all unitary transforma-
tions yielding the block structure (2.11). Conformal partitioning of X̂ = [X11

X21

X12
X22

] splits 
the original problem into four independent subproblems

A11X11 ≈ B1 and A11X12 ≈ 0, A22X21 ≈ 0, A22X22 ≈ 0, (2.12)

where only the first needs to be solved, since X12 = 0, X21 = 0, X22 = 0. The first 
problem A11X11 ≈ B1 called the core problem is again given uniquely (up to an unitary 
transformation).

It is worth to recall that the multiple (as well as the single) right-hand side approx-
imation problem represents a core problem if and only if it satisfies the following three 
characteristic properties (see [9, section 4]):

(CP1) The matrix A11 is of full column rank.
(CP2) The matrix B1 is of full column rank.
(CP3) Let A11 have ξ distinct nonzero singular values with multiplicities μi and μξ+1 ≡

dim(N(A∗11)), and let Ui be matrices having orthonormal bases of left singular 
vector subspaces of A11 as their columns.
Then the matrices U∗i B1 are of full row rank μi, for i = 1, . . . , ξ, ξ + 1.

These imply several other properties (see [10] and [6]), among others:

(CP4) The extended matrix [B1∣A11] is of full row rank.
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Note that some questions related to the TLS solvability in the multiple right-hand side 
case still remain open. For example, the multiple right-hand side core problem (contrary 
to the single right-hand side one) may not have a TLS solution or the TLS solution may 
not be unique; see [6].

2.3. Note on general unitarily invariant norms

The minimization in (2.2) and (2.9) can be considered also in other unitarily invariant 
norms. Ranks of the correction matrices are in both cases bounded by the number 
of columns in the corresponding right-hand sides, i.e., 0 ≤ rank([g, E]) ≤ 1 and 0 ≤
rank([G, E]) ≤ d, respectively. Consequently, [g, E] has at most one nonzero singular 
value making minimizations in (2.2) for all unitarily invariant norms conceptually the 
same. However, in the multiple right-hand side case, at most d singular values of [G, E]
might be nonzero. Thus, various unitarily invariant norms in (2.9) generally lead to 
different minimization (e.g., employing only the largest singular value for the spectral 
norm ∥ ⋅ ∥2, or all nonzero singular values for the Frobenius norm ∥ ⋅ ∥F , etc.; see also [26, 
Chap. II.3] and [37]). The classification of TLS problems with respect to an arbitrary 
unitarily invariant norm has been introduced recently in [17] and [36].

3. From matrix to tensor setting

Now we repeat basic tensor notation useful in the following derivations. By a tensor 
of order k we understand a k-way (k ≥ 1) array of dimensions n1, n2, . . . , nk (nj ≥ 1, 
j = 1, 2, . . . , k),

T ∈ Fn1×n2×⋯×nk with entries ti1,i2,...,ik , (3.1)

where F equals R or C. Its individual indices (or directions, or ways) 1, 2, . . . , k are called 
modes; see, e.g., [15], [14]. The one-way and two-way tensors are called simply vectors 
and matrices, respectively.

Denote n ≡ ∏k
j=1 nj the total number of entries of T . Three important types of sub-

arrays of a tensor are:

• n/np subarrays in F1×⋯×1×np×1×⋯×1 called the p-mode fibers, trivially isomorphic with 
vectors of length np (the fibers of a two-way tensor are called the columns and rows);

• n/(npnu) subarrays in F1×⋯×1×np×1×⋯×1×nu×1×⋯×1 called the (p, u)-modes slices, triv-
ially isomorphic with np-by-nu matrices (the slices of a three-way tensor are called 
frontal, lateral, and horizontal);

• np subarrays in Fn1×⋯×np−1×1×np+1×⋯×nk called the p-mode co-fibers, trivially isomor-
phic with (k − 1)-way tensors.
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3.1. The matrix-tensor product and the tensor norm

For the tensor T ∈ Fn1×n2×⋯×nk and a matrix S ∈ Fmp×np , the p-mode matrix-tensor 
product1 is defined as the k-way tensor

Z = S ×p T ∈ Fn1×⋯×np−1×mp×np+1×⋯×nk

with entries zi1,i2,...,ik = ∑
np

α=1 ti1,...,ip−1,α,ip+1,...,ik ⋅ sip,α ,
(3.2)

i.e., a p-mode fiber of Z is obtained by multiplication of S by a p-mode fiber of T , where 
the fibers are handled as vectors; see, e.g., [3], [27]. Multiplication by S� ∈ Fm�×n� in all 
modes � = 1, 2, . . . , k is for simplicity denoted as

�T ∣S1, S2, . . . , Sk� ≡ Sk ×k (⋯ ×3 (S2 ×2 (S1 ×1 T ))⋯). (3.3)

If all S�’s are invertible, (3.3) can be seen as a linear transformation of T .
For a norm of T we consider

∥T ∥ ≡ (
n1

∑
i1=1

n2

∑
i2=1

⋯
nk

∑
ik=1

∣ti1,i2,...,ik ∣2)
1
2

, (3.4)

a straightforward generalization of the Euclidean vector and Frobenius matrix norm; 
see [15]. Clearly, (3.4) is unitarily invariant, i.e.,

∥T ∥ = ∥Qp ×p T ∥ = ∥�T ∣Q1,Q2, . . . ,Qk�∥, for Q∗p = Q−1p , p = 1,2, . . . , k.

3.2. The matricization and the vectorization

Let T be the tensor (3.1) and let R ≡ {r1, r2, . . . , rR}, C ≡ {c1, c2, . . . , cC} be sets of 
indices so that R ∪C = {1, 2, . . . , k} and R∩C = ∅ (i.e., k = R+C), and r1 < r2 < ⋯ < rR, 
c1 < c2 < ⋯ < cC . Then the matrix

T R = T {r1,r2,...,rR} ∈ FnR×nC , where nR ≡∏R

�=1 nr� , nC ≡∏C

�=1 nc� , (3.5)

which contains ti1,i2,...,ik in rows with multiindices (irR , . . . , ir2 , ir1) and in columns with 
multiindices (icC , . . . , ic2 , ic1), both sorted in the lexicographical order, is called the ma-
tricization of T ; see, e.g., [15], [27, Chap. 3.1.2]. Clearly, T R = (T C )T. We are particularly 
interested in the so-called:

• �-mode matricization or unfolding, where R = {�}, C = {1, . . . , k} ∖ {�}, and

T {�} ∈ Fn�×(n/n�) (3.6)

1 We use the product ×p with reversed order of operands in comparison to the standard notation given in 
[3], to keep consistent ordering of objects in equations Ax ≈ b, AX ≈ B, and A ×1 X ≈ B.
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Fig. 1. The direct sum of two three-way tensors T and S.

contains all the �-mode fibers of T as columns (recall that n = ∏k
j=1 nj);

• vectorization, where R = {1, 2, . . . , k}, C = ∅, usually denoted by

vec(T ) ≡ T {1,2,...,k} ∈ Fn×1, (3.7)

which stores all the entries of T in one long vector.

The tensor Z = S ×p T (see (3.2)) can be rearranged by matricization Z{p} = S T {p}. 
Similarly, for (3.3) we have in general

�T ∣S1, S2, . . . , Sk�R = (SrR ⊗⋯⊗ Sr2 ⊗ Sr1)T R (ScC ⊗⋯⊗ Sc2 ⊗ Sc1)T, (3.8)

and in particular

vec(�T ∣S1, S2, . . . , Sk�) = (Sk ⊗⋯⊗ S2 ⊗ S1)vec(T ), (3.9)

where ⊗ is the Kronecker product of matrices.

3.3. The concatenation and the direct sum

Let T� ∈ F
n1×⋯×np−1×α�×np+1×nk , � = 1, . . . , ξ, be a set of k-way tensors of the same 

dimensions in all modes except for the pth mode. Then the k-way tensor

T ≡ [T1,T2, . . . ,Tξ]p ∈ Fn1×⋯×np−1×α×np+1×nk , where α ≡ ∑ξ

�=1 α�, (3.10)

satisfying T {p} = [(T {p}1 )T, (T {p}2 )T, . . . , (T {p}ξ )T]T, is called the (p-mode) concatenation
of tensors T�. The concatenation represents a direct sum of tensors in one mode; here 
the p-mode.

A direct sum in all modes of two k-way tensors T and S of dimensions nj and mj , 
respectively, j = 1, 2, . . . , k, is denoted by

diagk(T ,S) = T ⊕ S ∈ F(n1+m1)×(n2+m2)×⋯×(nk+mk) ; (3.11)

see also Fig. 1. In the case of two-way tensors (matrices) we use diag(T, S).
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3.4. The Tucker decomposition

Let �� ≡ rank(T {�}) be the ranks, and

T {�} = U�Σ�V
∗
� , U� = [U ′�, U ′′� ] ∈ Fn�×n� , U ′� ∈ Fn�×�� , U∗� = U−1� ,

the singular value decompositions (SVDs) of the �-mode matricizations of T . Since the 
last (n� − ��) rows of U∗� T {�} are zeros, the transformation �T ∣ U∗1 , U∗2 , . . . , U∗k � yields 
nonzero entries only in the leading principal subtensor

Tcore ≡ �T ∣U ′1
∗
, U ′2

∗
, . . . , U ′k

∗
� ∈ F�1×�2×⋯×�k (3.12)

called the Tucker core2 of T ; see [28], [29], [30]; see also [15, Sec. 4.1] and [27, Chap. 
3.1.2]. The uniquely given size of the Tucker core rank(T ) ≡ (�1, �2, . . . , �k) is called the 
multilinear (or vector) rank of T ; see, e.g., [15, Sec. 3]. Finally,

T = �diagk(Tcore,0) ∣U1, U2, . . . , Uk� = �Tcore ∣U ′1, U ′2, . . . , U ′k� (3.13)

is called the (full and economic, respectively) Tucker decomposition of T . It can be seen 
as a generalization of the (full and economic) SVD to tensors, but the Tucker core is in 
general full.3

4. TLS with tensor right-hand side

In this main part of the paper we first generalize the TLS formulation to problems 
with a tensor right-hand side and discuss its solvability. Then we derive the core problem 
transformation. We consider a linear approximation problem

A ×1 X ≈ B, where A ∈ Fm×n, X ∈ Fn×d2×⋯×dk , B ∈ Fm×d2×⋯×dk ; (4.1)

see also the illustration in Fig. 2.

4.1. Definition and basic solvability result

We introduce the following definition.

Definition 4.1 (TLS with tensor right-hand side). Let A ×1 X ≈ B be the approximation 
problem (4.1). The minimization problem

2 Similarity in the terminology “Tucker core” and “core problem” is just a coincidence, it does not refer 
to any relation between these two concepts.
3 A two-way tensor (i.e., a matrix) with the (full and economic) SVD T = UΣV ∗ = U ′Σ′V ′∗, Σ = diag(Σ′, 0), 

has the Tucker decomposition of the form T = �Σ ∣ U, V � = �Σ′ ∣ U ′, V ′�, i.e., Σ = �T ∣ U∗, V T �, and the Tucker 
core equals Σ′ = �T ∣ U ′∗, V ′T �.
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Fig. 2. Illustration of linear approximation problems with a matrix A and various right-hand sides. Left:
The vector (single) right-hand side. Middle: The matrix (multiple) right-hand side. Right: The tensor (of 
order 3) right-hand side.

min
G ∈ Fm×d2×⋯×dk

E ∈ Fm×n

(∥G∥2 + ∥E∥2F )
1
2 subject to (A +E) ×1 X = B + G (4.2)

is called the tensor right-hand side TLS.

Since the matricization represents only a reshaping of the array,

(∥G∥2 + ∥E∥2F )
1
2 = (∥G{1}∥2F + ∥E∥2F )

1
2 = ∥[G{1},E]∥F .

Thus we can immediately formulate a trivial but important theorem relating the tensor 
right-hand side TLS problem with a particular matrix right-hand side TLS problem.

Theorem 4.2. Let (4.1)–(4.2) be a tensor right-hand side TLS problem. Consider the 
matrix right-hand side TLS problem (2.8)–(2.9) with

X ≡ X {1} ∈ Fn×d, B ≡ B{1}, G ≡ G{1} ∈ Fn×d, and d ≡∏k

j=2 dj , (4.3)

i.e., X, B, and G are obtained as 1-mode matricizations of tensors X , B, and G, re-
spectively. Then these two TLS problems are equivalent in the sense that X represents 
a TLS solution of (2.8)–(2.9) if and only if X represents a TLS solution of (4.1)–(4.2). 
Moreover, ∥X∥F = ∥X∥.

The theorem directly implies that the basic results on the existence and uniqueness of 
minimal corrections E and G, and of the TLS solution X obtained previously for matrix 
right-hand side TLS problems (see the summary in section 2) can be transferred through 
the equivalent formulation also to the tensor case. Moreover, the minimum F -norm TLS 
solution of the matrix formulation (2.8)–(2.9) with (4.3) equals the TLS solution of the 
tensor formulation (4.1)–(4.2) minimal in the tensor norm (3.4). Consequently, from 
the TLS-solvability point of view, problems with tensor right-hand side behave the same 
way as the matrix right-hand side problems. However, generalization of the core problem 
concept is significantly more complicated. First we derive the tensor core problem, its 
relations to matrix core problem is discussed in section 6.
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4.2. Revealing the core problem

Now we derive the reduction. Basic structure of the individual steps is similar to 
multiple right-hand side core problem determination in [9], but requires special attention. 
Since both the matrix Frobenius norm and the tensor norm (3.4) in (4.2) are unitarily 
invariant, the original problem (4.1) can be transformed to

Â ×1 X̂ ≡ (P ∗AQ) ×1 �X ∣Q∗,R∗2 , . . . ,R∗k� ≈ �B ∣P ∗,R∗2 , . . . ,R∗k� ≡ B̂, (4.4)

where P −1 = P ∗, Q−1 = Q∗, R−1j = R∗j , j = 2, . . . , k are unitary matrices.4 We are looking 
for a transformation giving

�B ∣P ∗,R∗2 , . . . ,R∗k� ≡ diagk(B1,0), P ∗AQ ≡ [A11 0
0 A22

] , (4.5)

where both B1 and A11 have minimal dimensions over all unitary transformations yielding 
the block structure (4.5), and the 1-mode fibers of B1 are of the same length as columns 
of A11. For such transformation, conformal partitioning of X̂ would split the original 
problem to 2k subproblems

A11 ×1 X1,1,...,1 ≈ B1, A11 ×1 X1,i2,...,ik ≈ 0,

A22 ×1 X2,1,...,1 ≈ 0, A22 ×1 X2,i2,...,ik ≈ 0,

(i2, . . . , ik) ∈ {1,2}k−1, (i2, . . . , ik) ≠ (1, . . . ,1),
(4.6)

where only the first called the tensor core problem needs to be solved, since the others 
have trivial solutions. We reveal the core problem in four subsequent steps described in 
the following sections:

4.2.1 Preprocessing of the right-hand side;
4.2.2 Transformation of the system matrix;
4.2.3 Transformation of the right-hand side;
4.2.4 Final permutation.

4.2.1. Preprocessing of the right-hand side
Let (δ1, δ2, . . . , δk) = rank(B) be the multilinear rank of B, and

B = �diagk(Bcore,0) ∣R1,R2, . . . ,Rk� = �Bcore ∣R′1,R′2, . . . ,R′k� (4.7)

4 Here we are not fully consistent with the core problem revealing transformation introduced for the 
matrix right-hand problems. The transformations of X and B in (2.10)–(2.11) become in the tensor notation 
X̂ = �X ∣ Q∗, (R)∗� and B̂ = �B ∣ P ∗, (R)∗�, respectively. In particular, R becomes R; see (3.3) and also the 
footnote 3 on page 250.
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be its Tucker decomposition, i.e., Bcore ∈ Fδ1×δ2×⋯×δk . Then

A ×1 �X ∣ In,R∗2 , . . . ,R∗k� ≈ �B ∣ Im,R∗2 , . . . ,R
∗
k� (4.8)

with conformal partitioning of the tensor of unknowns (as before) splits the original 
problem to 2k−1 subproblems. Only the first subproblem

A ×1 Y ≈ C, (4.9)

where

C ≡ �B ∣ Im,R′2
∗
, . . . ,R′k

∗
� = �Bcore ∣R′1, Iδ2 , . . . , Iδk � ∈ Fm×δ2×⋯×δk and

Y ≡ �X ∣ In,R′2
∗
, . . . ,R′k

∗
� ∈ Fn×δ2×⋯×δk ,

(4.10)

has a nonzero right-hand side and thus needs to be solved. The other subproblems have 
trivial solutions. Moreover, �-mode matricizations of the right-hand side C for � = 2, . . . , k
are of full row rank having mutually orthogonal rows.

4.2.2. Transformation of the system matrix
Consider the SVD of A,

A = UΣV ∗, U ∈ Fm×m, Σ ∈ Rm×n, V ∈ Fn×n, (4.11)

where U∗ = U−1, V ∗ = V −1. Let A have ξ distinct nonzero singular values

σ1 > σ2 > ⋯ > σξ > 0, (4.12)

and let m�, � = 1, . . . , ξ, be their multiplicities, i.e., ∑ξ
�=1 m� = rank(A). Further denote 

mξ+1 ≡m − rank(A) = dim(N (A∗)), and nξ+1 ≡ n − rank(A) = dim(N (A)). Then

Σ = diag(σ1Im1 , σ2Im2 , . . . , σξImξ
,0mξ+1,nξ+1). (4.13)

The problem (4.9)–(4.10) can be transformed to

(U∗AV ) ×1 Z = Σ ×1 Z ≈ F , (4.14)

where

F ≡ �C ∣U∗, Iδ2 , . . . , Iδk � = �B ∣U∗,R′2
∗
, . . . ,R′k

∗
� and

Z ≡ �Y ∣V ∗, Iδ2 , . . . , Iδk � = �X ∣V ∗,R′2
∗
, . . . ,R′k

∗
�.

(4.15)

All �-mode matricizations of F for � = 2, . . . , k are of full row rank having mutually 
orthogonal rows. The system matrix on the left of (4.14) is diagonal.
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4.2.3. Transformation of the right-hand side
Now we focus on the 1-mode matricization of the right-hand side. From (4.14) we 

obtain

ΣZ{1} ≈ F{1} = U∗C{1} = U∗B{1}(R′k ⊗⋯⊗R′2), (4.16)

where F{1} has d ≡ (∏k
j=2 δj) columns. In order to get as many zero rows in the right-hand 

side as possible (while preserving the diagonal structure of the system matrix) we consider 
the following partitioning

F{1} = [FT
1 , FT

2 , . . . , FT
ξ , F

T
ξ+1]

T
, where F� ∈ Fm�×d, � = 1,2, . . . , ξ, ξ + 1. (4.17)

Let μ� ≡ rank(F�). Consider the SVD of F� in the form

F� = S�Θ�W
∗
� , S� ∈ Fm�×m� , Θ� ∈ Rm�×μ� , W� ∈ Fd×μ� , (4.18)

where S∗� = S−1� is square unitary, Θ� is of full column rank, and W� has mutually 
orthonormal columns, i.e., W ∗

� W� = Iμ�
, � = 1, 2, . . . , ξ, ξ + 1. Consider unitary matrices

SU ≡ diag(S1, S2, . . . , Sξ, Sξ+1), SV ≡ diag(S1, S2, . . . , Sξ, Inξ+1). (4.19)

Since S∗UΣSV = Σ (see (4.13)), the problem (4.16) can be transformed to

(S∗UΣSV )(S∗V Z{1}) = Σ(S∗V Z{1}) ≈ (S∗UF{1}), (4.20)

while preserving the diagonal structure of the system matrix. The right-hand side is then

S∗UF{1} = [(S∗1F1)T, (S∗2F2)T, . . . , (S∗ξFξ)T, (S∗ξ+1Fξ+1)T]
T
,

where

S∗� F� = Θ�W
∗
� ≡ [ H�

0m�−μ�,d
] , with H� ∈ Fμ�×d. (4.21)

Thus the right-hand side has the full row rank and mutually orthogonal rows.
Consequently, in the tensor notation, the problem (4.14)–(4.15) is transformed to

(S∗UU∗AV SV
,-----------------------------.------------------------------/

Σ

) ×1 �Z ∣S∗V , Iδ2 , . . . , Iδk � ≈ �F ∣S∗U , Iδ2 , . . . , Iδk �. (4.22)

The right-hand side tensor �F ∣ S∗U , Iδ2 , . . . , Iδk � is the 1-mode concatenation of ξ + 1
tensors F� ∈ Fm�×δ2×⋅×δk satisfying F{1}� ≡ S∗� F� (see (3.10)), i.e., it contains these tensors 
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Fig. 3. The structure of the right-hand side tensor �F ∣ S∗U , Iδ2 , . . . , Iδk
� of (4.22), for k = 3. The tensor contains 

nonzero and zero blocks concatenated along the 1-mode fibers. Each nonzero block H�, � = 1, 2, . . . , ξ, ξ + 1, 
contains μ� linearly independent and mutually orthogonal horizontal slices (1-mode co-fibers in general).

as blocks concatenated along the 1-mode fibers. Each F� block, � = 1, 2, . . . , ξ, ξ + 1, 
contains two subblocks

H� ∈ Fμ�×δ2×⋯×δk and 0 ∈ F(m�−μ�)×δ2×⋯×δk (4.23)

concatenated along the 1-mode fibers. The first subblock satisfies H� ≡ H{1}� and it is 
formed by μ� linearly independent and mutually orthogonal 1-mode co-fibers; see Fig. 3
for illustration of the structure of the right-hand side. Note that 0 ≤ μ� ≤ min{m�, d} and 
0 ≤ (m� −μ�) ≤m�, thus in particular one of the subblocks (4.23) may have no co-fibers.

4.2.4. Final permutation
Now the aim is to find a permutation of (4.22) in order to get the block structure 

(4.5). The permutation is given by the structure of (non)zero blocks in the right-hand 
side. Such permutation moves the nonzero blocks of the tensor �F ∣ S∗U , Iδ2 , . . . , Iδk � (or 
block-rows of the matrix S∗UF{1}) up along the 1-mode fibers while moving the zero 
blocks (or block-rows) down. It can be realized by the permutation matrix

ΠU ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ Iμ1
0 ] 0 0 [ 0

Im1−μ1
] 0 0

⋱ ⋮ ⋱ ⋮
0 [ Iμξ

0 ] 0 0 [ 0
Imξ−μξ

] 0

0 ⋯ 0 [ Iμξ+1
0 ] 0 ⋯ 0 [ 0

Imξ+1−μξ+1
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

since

ΠT
U(S∗UF{1}) = [HT

1 ,H
T
2 , . . . ,H

T
ξ ,H

T
ξ+1,0d,m−μ]

T
, where μ ≡ ∑ξ+1

�=1 μ�. (4.24)

Because the permutation ΠU is applied on the whole problem (4.22) from the left, the 
blocks in the system matrix can be permuted in an inconvenient way. This can be fixed 
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by a second permutation applied from the right to get the block structure (4.5) of the 
system matrix, i.e.,

ΠV ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ Iμ1
0 ] 0 [ 0

Im1−μ1
] 0 0

⋱ ⋱ ⋮
0 [ Iμξ

0 ] 0 [ 0
Imξ−μξ

] 0

0 ⋯ 0 0 ⋯ 0 Inξ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

recall that nξ+1 = n − rank(A). Then

ΠT
U(S∗UU∗AV SV
,-----------------------------.------------------------------/

Σ

)ΠV = diag( diag(σ1Iμ1 , σ2Iμ2 , . . . , σξIμξ
,0μξ+1,0)

,-------------------------------------------------------------------------------------------------------------------------.--------------------------------------------------------------------------------------------------------------------------/
A11

,

diag(σ1Im1−μ1 , σ2Im2−μ2 , . . . , σξImξ−μξ
,0mξ+1−μξ+1,nξ+1)

,---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------/
A22

) ≡ [A11 0
0 A22

]
(4.25)

is the required block form.

4.3. Summary of the transformation

Let us briefly summarize the steps of the core problem revealing transformation:

A ×1 X ≈ B (see (4.1)),
A ×1 �X ∣ In,R∗2 , . . . ,R∗k� ≈ �B ∣ Im,R∗2 , . . . ,R

∗
k� (see (4.8)),

(U∗AV
,------.------/
Σ

) ×1 �X ∣V ∗,R∗2 , . . . ,R∗k� ≈ �B ∣U∗,R∗2 , . . . ,R∗k� (see (4.14)),

(
?----------@-----------D
S∗UΣSV ) ×1 �X ∣S∗V V ∗,R∗2 , . . . ,R∗k� ≈ �B ∣S∗UU∗,R∗2 , . . . ,R∗k� (see (4.20)),

(ΠT
UΣΠV ) ×1 �X ∣ΠT

V S
∗
V V

∗,R∗2 , . . . ,R
∗
k� ≈ �B ∣ΠT

US
∗
UU

∗,R∗2 , . . . ,R
∗
k� (see (4.25)).

Consequently, the original problem (4.1) is transformed by the unitary transformation 
(4.4) into a problem

Â
?--------------------------------------------------------------------------------@--------------------------------------------------------------------------------D
((USUΠU
,------------.------------/

P

)∗A(V SV ΠV
,-------------.-------------/

Q

))×1

X̂
?---------------------------------------------------------@----------------------------------------------------------D
�X ∣Q∗,R∗2 , . . . ,R∗k� ≈

B̂
?-------------------------------------------------------@--------------------------------------------------------D
�B ∣P ∗,R∗2 , . . . ,R∗k�, (4.26)

where Rj = [R′j , R′′j ] are unitary matrices containing the left singular vectors of matriciza-
tions B{j}, j = 2, . . . , k, i.e., from the Tucker decomposition of B (see (4.7)–(4.10)); U , V
are unitary matrices containing the left and right singular vectors of A (see (4.11)–(4.13)); 
SU , SV are direct sums of unitary matrices containing the left singular vectors of F� ma-
trices (see (4.19)–(4.18)); and ΠU , ΠV are permutations revealing the block structure.

156



I. Hnětynková et al. / Linear Algebra and its Applications 555 (2018) 241–265 257

The transformed system has the following system matrix

Â = (ΠT
U(S∗UU∗AV SV
,-----------------------------.------------------------------/

Σ

)ΠV ) ≡ [
A11 0
0 A22

] (4.27)

where A11 ∈ Rμ×ν , μ ≡ ∑ξ+1
�=1 μ�, ν ≡ μ − μξ+1), A22 ∈ R(m−μ)×(n−ν) are defined by (4.25). 

The tensor right-hand side is

B̂ = diagk(B1,0), where B1 = [H1,H2, . . . ,Hξ,Hξ+1]1 ∈ Fμ×δ2×⋯×δk , (4.28)

i.e., B1 is the concatenation of the tensors H� (see (4.23)) along 1-mode fibers. The 
following definition formally introduces the tensor core problem.

Definition 4.3 (Tensor core problem (TCP)). The subproblem

A11 ×1 X1,1,...,1 ≈ B1

(see (4.6)) is called the tensor core problem (TCP) within a linear approximation problem 
A ×1 X ≈ B (see (4.1)), if A11 and B1 are minimally dimensioned (and A22 maximally 
dimensioned) subject to the unitary transformation

�B ∣P ∗,R∗2 , . . . ,R∗k� ≡ diagk(B1,0), P ∗AQ ≡ [A11 0
0 A22

] ,

where P ∗ = P −1, Q∗ = Q−1, R∗j = R−1j , j = 2, . . . , k; cf. (4.5).

The above described construction gives a tensor subproblem having the following 
properties:

(CP1) The matrix A11 is of full column rank.
(CP2) The j-mode matricization B{j}1 is of full row rank, or equivalently, all j-mode 

co-fibers of B are linearly independent, j = 2, . . . , k.
(CP3) Let A11 have ξ distinct nonzero singular values with multiplicities μi and μξ+1 ≡

dim(N(A∗11)), and let Ui be matrices having orthonormal bases of left singular 
vector subspaces of A11 as their columns.
Then the matrices U∗i B

{1}
1 are of full row rank μi, for i = 1, . . . , ξ, ξ + 1.

The following theorem states that the subproblem obtained by the construction above 
represents the core problem. We give the theorem without a proof since it can be de-
rived fully analogously to the proof for the matrix right-hand side case in [9, Sect. 4.1, 
pp. 926–929], based on the properties (CP1)–(CP3).
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Theorem 4.4 (TCP revealing transformation). The unitary transformation developed in 
section 4.2 and summarized in (4.26)–(4.28) is the core problem revealing transforma-
tion, i.e., the system matrix A11 ∈ Rμ×ν and the right-hand side tensor B1 ∈ Fμ×δ2×⋯×δk

form the core problem

A11 ×1 X1,1,...,1 ≈ B1

within A ×1 X ≈ B. For an arbitrary unitary transformation of the form (4.5), yielding 
the same block structure with Ã11 ∈ Fμ̃×ν̃ and B̃1 ∈ Fμ̃×δ̃2×⋯×δ̃k , it holds that

μ ≤ μ̃, ν ≤ ν̃, δj ≤ δ̃j , j = 2, . . . , k.

Note that the above obtained tensor core problem generalizes the SVD form of the 
matrix core problem; see [9].

5. Coupled TLS problems with tensor right-hand sides

The vector, or matrix, or tensor right-hand side TLS problem, and also the concept 
of the core problem within can be in the fully analogous way extended also to a set of 
coupled linear approximation problems

A ×1 X (t) ≈ B(t), where t = 1,2, . . . , τ (5.1)

and A ∈ F
m×n, X (t) ∈ F

n×d
(t)
2 ×⋯×d

(t)
kt , B(t) ∈ F

m×d
(t)
2 ×⋯×d

(t)
kt . The right-hand side tensors 

of each of these problems may be of different orders (including the second and the first 
order tensors, i.e., matrices and vectors, respectively), and different dimensions except 
for the first one. Therefore, neither the right-hand sides B(t) nor the solutions X (t) can 
be concatenated into one big tensor, in general.

Definition 5.1 (Coupled TLS problems). Let A ×1 X (t) ≈ B(t), t = 1, 2, . . . , τ be the set of 
approximation problems (5.1). The minimization problem

min
G(1) ∈ Fm×d

(1)
2 ×⋯×d

(1)
k1

⋮
G(τ) ∈ Fm×d

(τ)
2 ×⋯×d

(τ)
kτ

E ∈ Fm×n

⎛
⎝
(∑τ

t=1 ∥G
(t)∥2) + ∥E∥2F

⎞
⎠

1
2

subject to

(A +E) ×1 X (t) = B(t) + G(t), t = 1,2, . . . , τ

(5.2)

is called the coupled TLS problem.

Employing the matricizations of all the right-hand sides, the coupled problem can be 
rearranged while putting everything together into one big matrix problem
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A [(X (1)){1}, (X (2)){1}, . . . , (X (τ)){1}] ≈ [(B(1)){1}, (B(2)){1}, . . . , (B(τ)){1}]. (5.3)

Note that each block (B(t)){1} may have a different number of columns. Then the solution 
of the coupled problem can be found in the same way as shown in section 4.1; see in 
particular Theorem 4.2. The concept of the core problem can be introduced analogously; 
cf. Definition 4.3.

Definition 5.2 (Coupled core problem). The set of subproblems

A11 ×1 X (t)1,1,...,1 ≈ B
(t)
1 , t = 1,2, . . . , τ,

is called the coupled core problem within (5.1) if A11 and B(t)1 are minimally dimensioned 
(and A22 maximally dimensioned) subject to the unitary transformations

�B(t) ∣P ∗, (R(t)2 )∗, . . . , (R(t)kt
)∗� ≡ diagkt

(B(t)1 ,0), P ∗AQ ≡ [A11 0
0 A22

] , (5.4)

where P ∗ = P −1, Q∗ = Q−1, (R(t)j )∗ = (R(t)j )−1, j = 2, . . . , kt, t = 1, 2, . . . , τ . (Note that P
and Q are independent on t.)

The construction described in sections 4.2.1–4.2.4 can also be generalized to coupled 
TLS problems. We start with the Tucker decomposition of all right-hand side tensors 
while forming the tensors C(t) as in (4.10). Then, using the SVD of A we get right-hand 
sides F(t) as in (4.15). Partitioning of

[(F(1)){1}, (F(2)){1}, . . . , (F(τ)){1}]

to block-rows with vertical dimensions given by the multiplicities of the singular values of 
A and the dimension of the null-space of A∗ (see (4.17) and Fig. 3), with the subsequent 
SVDs of these blocks (see (4.18)) allows us to assemble the SU and SV matrices in the 
same way as in (4.19). The final permutation (see section 4.2.4) reveals the block struc-
ture (5.4) simultaneously, i.e., for all t = 1, 2, . . . , τ at the same time. Such construction 
yields the set of subproblems, which has the minimality property mentioned above, and 
therefore represents the coupled core problem.

6. Discussion and comparison of the results

It is particularly interesting to compare the results of sections 4.2 and 4.3 with those 
obtained previously for the matrix right-hand side problems in the view of the relation 
given in section 4.1 (see Theorem 4.2). The TLS problem with the tensor right-hand side

A ×1 X ≈ B can always be matricized as AX {1} ≈ B{1}, (6.1)
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and instead of the tensor minimization (4.2) the matrix minimization (2.9) can be con-
sidered. Theorem 4.2 says that both approaches yield mathematically the same minima 
and the same TLS solution(s), up to the 1-mode matricization.

The core problem point of view, however, reveals some differences. Let

�B ∣P ∗,R∗2 , . . . ,R∗k� ≡ diagk(B1,0), P ∗AQ ≡ [A11 0
0 A22

] (6.2)

be the tensor core problem within A ×1 X ≈ B, and

P̃ ∗B{1}R ≡ [B1 0
0 0 ] , P̃ ∗AQ̃ ≡ [ Ã11 0

0 Ã22
] (6.3)

the matrix core problem (see section 2.2) within the matricized problem AX {1} ≈ B{1}. 
Since the (same) SVD of A, A = UΣV ∗ appears in both core problem revealing trans-
formations and the projections of the 1-mode fibers of B and the columns of B{1} onto 
the left singular vector spaces of A are the same, the only important difference appears 
in the right-hand side preprocessing.

Recall that 1-mode fibers of F (see (4.15)) represent linear combinations of the 
columns of the above mentioned projections U∗B{1}. The number of linearly independent 
1-mode co-fibers of its subtensors F� (see (4.17)) is clearly the same as the number of the 
linearly independent rows of F� = F{1}� . Therefore, the choice of S� (see (4.18)–(4.21)) is 
independent on the choice of the unitary matrices Rj performing the linear combinations 
of 1-mode-fibers of B in j-modes, j = 2, . . . , k (see (4.15)), and on the unitary matrix R
performing combinations of columns of U∗B{1} in revealing of (6.3). Thus, the matrices 
SU , SV , the subsequent permutations ΠU , ΠV , and also the blocks A11, A22 are in both 
transformations (6.2) and (6.3) the same, i.e., in particular A11 = Ã11 and A22 = Ã22. 
Consequently, also the length of 1-mode fibers of B1 equals to the number of rows of B1. 
Thus, in general, the most important difference (originated in the preprocessing) is in 
the number of individual right-hand sides. In particular, the number of 1-mode fibers of 
B1 (i.e., the number of columns of B{1}1 ) may differ from the number of columns of B1. 
Clearly, the right-hand sides satisfy

B{1}1 (R′k ⊗⋯⊗R′2)
∗

= [B1,0]R∗.

Consequently, both core problems are the same (after reshaping the tensor by the 1-mode 
matricization) if and only if

Rk ⊗⋯⊗R2 = R ∈ Fd×d, where d ≡∏k

j=2 dj , (6.4)

i.e., if and only if the preprocessings of the right-hand sides of the two problems in (6.1)
yield the same result. The following examples illustrate the situation where the core 
problems are equivalent (see Example 6.1) and different (see Example 6.2).
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Example 6.1. Consider an approximation problem A ×1 X ≈ B, where A ∈ R
4×3, 

rank(A) = 3, and

B =

�

�

�

�
1 0
0 1
0 0
0 0

0 0
0 0
1 0
0 1

, B{1} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since B{1}, B{2}, and B{3} are of full row rank, B is the Tucker core by itself. The 
matricized problem AX {1} ≈ B{1} has full column rank right-hand side matrix B{1}. 
Therefore, the right-hand side preprocessing is not present in the tensor, as well as in 
the matrix core problem reduction. Let A = UΣV T be the SVD of A, i.e. Σ ∈ R4×3 and U , 
V are unitary matrices. Following the tensor reduction derived in the previous sections, 
we obtain

A11 ×1 X1,1,1 ≈ B1, A11 = Σ, B1 = UT ×1 B, and R2 = R3 = I2, R3 ⊗R2 = I4.

Applying the reduction to the so-called SVD form (see [9]), we get

A11X {1}1 ≈ B{1}1 , A11 = Σ, B{1}1 = UTB{1}, and R = I4.

We see, that R3 ⊗R2 = R and thus the core problem of the matricized problem is the 
matricized tensor core problem. This clearly implies that the approaches based on tensor 
core reduction and based on matricization lead to the same result.

Example 6.2. Consider an approximation problem A ×1 X ≈ B, where A ∈ R
4×3, 

rank(A) = 3, and

B =

�

��

�

�

��

��

�

�

1 0
0 0

0 0
0 1

1 0
0 0

0 0
0 1

1 0
0 0

0 0
0 1

�
�

�
�

�
�

�

�
�

, B{1} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the tensor is so-called super-symmetric, all three matricizations give the same 
matrix B{1} = B{2} = B{3} of full row rank. Thus B again represent the Tucker core by 
itself. Let A = UΣV T be the SVD of A. Similarly as in Example 6.1, the tensor reduction 
gives

A11 ×1 X1,1,1 ≈ B1, A11 = Σ, B1 = UT ×1 B, and R2 = R3 = I4, R3 ⊗R2 = I16.

However, considering the approach based on matricization, the right-hand side B{1} has 
to be preprocessed as follows
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B{1} =

⎡⎢⎢⎢⎢⎢⎢⎣

2
1
2 0 0 0
0 2

1
2 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
,-----------------------------------------.------------------------------------------/

C

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 2−
1
2 0 0 0 0 0 2−

1
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2−
1
2 0 0 0 0 0 2−

1
2 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------/

(R′)T

.

Consequently, the reduction to the SVD form gives

A11X {1}1 ≈ B{1}1 , A11 = Σ, B{1}1 = UTC, and R = [R′,R′′], R−1 = RT ∈ R16×16.

From the pattern of (non)zero entries of R, it is visible that R cannot be written as 
a Kronecker product of two matrices of order four, i.e., R3 ⊗R2 ≠ R. In summary, the 
approaches based on tensor core reduction and based on matricization are not equivalent 
here.

Recall that the core problem is unique up to a unitary transformation. Thus we are 
interested in the dimensions of the core problem and not necessarily in the particular 
entries of A11 and B1. The previous discussion implies the following corollary.

Corollary 6.3. Let A ×1 X ≈ B be a linear approximation problem with the tensor 
right-hand side and AX ≈ B, X ≡ X {1}, B ≡ B{1} its matricized counterpart. Let 
A11 ×1 X1 ≈ B1 and Ã11X1 ≈ B1 be the core problems within the two formulations, where 
P , Q, R2, . . . , Rk and P̃ , Q̃, R are the unitary matrices of the respective core problem 
revealing transformations.

Then A11 and Ã11 are always of the same dimensions. However, B{1} and B1 are of 
the same dimensions if and only if the matrix Rk ⊗⋯ ⊗R2 is a unitary transformation 
of the matrix R.

In summary, for tensor right-hand side problems we can choose between two core 
approaches:

• keeping the tensor structure while revealing the tensor core problem, or
• matricization while revealing the matrix core problem.

The principal difference can also be illustrated in Fig. 3. In the matricized problem, 
the unitary transformation R performs linear combinations of all 1-mode fibers while 
preserving the Frobenius norm of the horizontal slices (in general 1-mode co-fibers). In 
the tensor setting, unitary transformations Rj, j = 2, 3, perform linear combinations of 
1-mode fibers that belong only to frontal or lateral slices (in general (1, j)-mode slice), 
respectively, while preserving the Euclidean norm of j-mode fibers. We see that revealing 
the core problem while preserving the tensor structure is significantly more constrained. 
The condition (6.4) is in general rarely satisfied.
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Analogously, the coupled core problem within (5.1) can be compared with its matrix 
counterpart within (5.3). The core problems are the same (after reshaping the tensor by 
the 1-mode matricization) if and only if

diag
⎛
⎝
R
(1)
k1
⊗⋯⊗R

(1)
2 , R

(2)
k2
⊗⋯⊗R

(2)
2 , . . . , R

(τ)
kτ

⊗⋯⊗R
(τ)
2
⎞
⎠
= R ∈ Fd×d, (6.5)

where d ≡ ∑τ

t=1∏
kt

j=2 d
(t)
j .

Consequently, a corollary analogous to Corollary 6.3 can be formulated also for the 
coupled problem.

In general, the application of the core problem reduction on a problem with highly 
structured right-hand side restricts the possibilities for choosing the unitary matrix R. 
In both cases above we require R to belong into some subgroup of the whole unitary 
group U(d) of degree d.

Recall that the core problem within the matrix (multiple) right-hand side approxi-
mation problem (see section 2.2) may not have a TLS solution, contrary to the vector 
(single) right-hand side case. The possible nonexistence of the TLS solution is closely 
related to the structure of the right-hand side as it has been recently shown in [6]. We 
see, that further increasing the order of the right-hand side tensor from a matrix (i.e., 
two-way tensor) to a general k-way tensor does not change the behavior of the TLS for-
mulation from the solvability point of view. It involves only the size of the core problem 
within.

7. Conclusions

We have introduced the definition of the TLS problem within approximation problems 
with (single or multiple) tensor right-hand sides allowing to apply directly the results 
on the existence and uniqueness of the TLS solution available for the standard matrix 
right-hand side problems. We have proved that, on the other hand, the necessary and 
sufficient information for solving the tensor right-hand side problem and its matricized 
counterpart can be different. We have shown that there exists the minimally dimen-
sioned core problem within the TLS problem with a tensor right-hand side, by deriving 
the core reduction transformation. The tensor core problem is, in general, larger than 
the core problem within the matricized problem, since it respects the structure given by 
the multiway configuration of the original tensor right hand-side. This work represents 
the first step towards investigation of fully tensorized (general or structured) linear ap-
proximation problems of the form A ×⋯ X ≈ B, where all A, X , and B are tensors of 
higher orders and “×⋯” a tensor-tensor product in appropriate modes. Since the tensor 
formulation covers also the formulations analyzed previously, we believe the results can 
be used in further analysis of single and multiple right-hand side TLS problems.
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1. Introduction

One of the typical tasks arising in the area of data fitting is the solution of linear 
approximation problems with a matrix model and a matrix (or so-called multiple) right-
hand side,

AX ≈ B, A ∈ Fm×n, B ∈ Fm×d, (1.1)

where F = R or F = C. When the errors are present both in the model A and the 
observations B, the total least squares (TLS) method is preferred, which however yields 
several principal difficulties (see [23], [26], [27], [28], [6], [5]). In particular, the TLS 
problem may not have a solution or the solution may not be unique; see [2] for the 
(so-called single right-hand side) case d = 1 and [28], [5], [9] for the general case. The 
core reduction developed in [18] for d = 1 and in [7], [8], [4] for d ≥ 1, allows to extract the 
necessary and sufficient data from A, B by employing a specific unitary transformation 
on the original problem. This approach does not (except of reducing the dimensions of 
the problem) necessarily simplify the solvability of the approximation problem, since the 
resulting (typically small dimensional) core problem still may not have a solution. The 
existence of the (unique) TLS solution is ensured only in the single right-hand side case, 
i.e., when d = 1. Moreover, such solution (for d = 1) can be unitarily transformed back 
to obtain the (minimum norm) TLS solution of the original problem if it exists, or the 
so-called (minimum norm) nongeneric solution (otherwise); see [18].

The right-hand side matrix B arises essentially in two different ways. Either the 
columns of B represent d individual observations (for example when the observation 
depends on a parameter that can be sampled), or B is a single observation of the matrix 
form; see, e.g., [21], [22] for particular applications. If the observation depends on several 
parameters, their sampling leads to a set of observations forming a structured (typically 
tensor) right-hand side. A TLS formulation and core reduction for such problems have 
been proposed and analyzed recently in [10]. In this paper, we consider the observation 
to be a matrix and concentrate on the model setting.

The fundamental difficulty of TLS (not present in other formulations such as ordinary 
LS) is possible nonexistence of the solution. Situations where this happens were fully 
classified in the paper [5] revealing that the problem lies in the fact that the search set 
for the corrections of the data B, A is too limited. To see this, note that in (1.1) our 
goal is in fact to find a single matrix pre-image X of the single matrix observation B. 
Generally, X and B could be linked through a linear model A(X) ≈ B, where A is a 
general linear mapping from a space of matrices to another space of matrices. Thus A
can be represented by a four-way array, i.e., a fourth-order tensor. The problem (1.1) is 
then just a special case of this setting. Since the model is here represented by a single 
matrix A, TLS framework allows only matrix corrections of both A and B.

In this paper we try to better understand the above described limitations, in partic-
ular in the context of the core problem theory. We consider several generalizations of 
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the setting of the original model such that defining a natural generalization of the TLS 
minimization for the related approximation problem results in enrichment of the search 
space for the model corrections. First, we analyze a bilinear model appearing in various 
applications (see [13], [14]) and the corresponding TLS minimization. We derive the core 
reduction for the bilinear model, which is the main result of this paper. Further, the ex-
tension to a higher Kronecker rank model (i.e., sum of bilinear models) is noted. Recall 
that models of the Kronecker rank two appear, e.g., in connection with Sylvester or Lya-
punov equations, etc. Then, approximation problems with a fully tensorized model are 
considered. Here we show that the search set is so rich that the approximation problem 
can be transformed (through vectorization) into a single right-hand side approximation 
problem. This allows to apply the core reduction available for single right-hand side prob-
lems directly, and therefore simplify the solvability classification. Relationships among 
individual generalizations are discussed.

In general, we consider a linear mapping A ∶ U �→ V between finite-dimensional 
linear vector spaces U and V over the same field F , i.e., A ∈ L (U , V ) being the set of 
all such mappings, with the range R(A) ⊊ V . The linear approximation problem

A(x) ≈ b, where b ∈ V but b ∉ R(A) (1.2)

is replaced by the TLS minimization

min
g∈V

E∈E⊆L (U ,V )

∥(g, E )∥☆ subject to (A + E )(x) = b + g, (1.3)

where E , the correction of our model is taken from some search set E , that may be 
in general a subspace or submanifold of L (U , V ). Here ∥ ⋅ ∥☆ denotes some norm in 
V × L (U , V ). We consider the Euclidean and Frobenius norms of vectors and matri-
ces, respectively, and their natural extension to tensors. However, any general unitarily 
invariant norm (see [19, Chap. II.3], [25], [15], [24]) can be considered for the (unitary) 
core problem transformation and subsequent reduction.

This paper is organized as follows. Section 2 recapitulates TLS formulations for prob-
lems with a matrix model and various objects (vectors, matrices, and tensors) on the 
right-hand side. Section 3 is the key part introducing and analyzing problems with var-
ious generalizations of the model setting. Section 4 concludes the paper.

Throughout the paper I� (or just I) denotes an � ×� identity matrix and e(�)i (or just ei) 
its ith column; 0�,ξ (or just 0) denotes an � × ξ zero matrix; and MT, M∗ ≡ MT, R(M), 
and N (M) denote the transposition, the Hermitian conjugation, the range, and the 
null-space of a matrix M , respectively. Further, M ⊗ K denotes the Kronecker product 
of matrices where mi,j , the (i, j)th entry of M is replaced by the block mi,jK. For a 
tensor T ∈ Fn1×n2×⋯×nk , we consider three types of subarrays:
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• n/np subarrays in F1×⋯×1×np×1×⋯×1 called the p-mode fibers, trivially isomorphic with 
vectors of length np (the fibers of a two-way tensor are called the columns and rows);

• n/(npnu) subarrays in F1×⋯×1×np×1×⋯×1×nu×1×⋯×1 called the (p, u)-modes slices, triv-
ially isomorphic with np-by-nu matrices (the slices of a three-way tensor are called 
frontal, lateral, and horizontal);

• np subarrays in Fn1×⋯×np−1×1×np+1×⋯×nk called the p-mode co-fibers, trivially isomor-
phic with (k − 1)-way tensors.

Note that arranging of all the p-mode fibers into one matrix T {p} ∈ Fnp×((∏
k
j=1 nj)/np) in 

a lexicographical order w.r.t. multiindices (ik, . . . , ip+1, ip−1, . . . , i1) is called the p-mode 
matricization of tensor T ; see, e.g., [12], [20, Chap. 3.1.2].

2. Preliminaries

In the classical setting, the mapping A is represented by a single matrix A called the 
system (or model) matrix. The structure of the right-hand side depends on the number 
of observations being available for this model, and, in particular, on the number of free 
parameters involving the observations. Now we summarize basic TLS formulations and 
the corresponding core theory studied previously.

2.1. TLS formulations for various right-hand sides

In the simplest case of (1.2), we have just one observation forming an m-vector. The 
so-called single (or vector) right-hand side problem then takes the form

Ax ≈ b, where A ∈ Fm×n, x ∈ Fn, b ∈ Fm. (2.1)

If the observation depends, e.g., on one free parameter, considering d samples of its value, 
we obtain d vectors forming a matrix. This so-called multiple (or matrix) right-hand side 
problem takes the form

AX ≈ B, where A ∈ Fm×n, X ∈ Fn×d, B ∈ Fm×d. (2.2)

In the case of (k − 1) free parameters, having dj+1 samples of the value of the jth 
parameter, observations made on a full Cartesian grid of sampled parameters form a 
k-way tensor. This tensor right-hand side problem takes the form

A ×1 X ≈ B, where A ∈ Fm×n, X ∈ Fn×d2×⋯×dk , B ∈ Fm×d2×⋯×dk . (2.3)
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Here S = M ×� T denotes the �-mode matrix-tensor product.1 In other words, the �-mode 
fibers of the tensor S are obtained as matrix-vector products of the matrix M with 
�-mode fibers of T , where the fibers are handled as column vectors; see, e.g., [1], [20].

The respective TLS minimizations (1.3) are considered as:

min
E ∈ Fm×n, g ∈ Fm

∥[g,E]∥F subject to (A + E)x = b + g, (2.4)

min
E ∈ Fm×n, G ∈ Fm×d

∥[G,E]∥F subject to (A + E)X = B + G, (2.5)

min
E ∈ Fm×n, G ∈ Fm×d2×⋯×dk

(∥E∥2
F + ∥G ∥2) 1

2 subject to (A + E) ×1 X = B + G. (2.6)

Here the norm ∥T ∥ of a tensor T is the natural extension of the Euclidean and Frobenius 
norms of a column vector and a matrix, respectively, i.e., ∥T ∥ is the square-root of sum 
of squares of entries of T ; see [12]. We call it simply the tensor norm.

Note that if the observations in (2.3) are not available for the full Cartesian grid, it 
is possible to reformulate the approximation problem as a set of coupled TLS problems 
with several differently structured right-hand sides and the same matrix; for more details 
see [10].

2.2. The core problem transformation

Based on the unitary invariance of the Euclidean, Frobenius, and tensor norms, the 
so-called core problem theory was developed for the vector right-hand sides problems 
(2.4) in the works [16], [17], [18]; for the matrix right-hand sides problems (2.5) in [7], 
[8], and [4]; and for the tensor right-hand sides problems (2.6) in [10]. It was shown 
that in these three respective cases there exist: A pair of unitary matrices P ∈ Fm×m, 
Q ∈ Fn×n; a triplet of unitary matrices P ∈ Fm×m, Q ∈ Fn×n, R ∈ Fd×d; and a (k + 1)tuple 
of unitary matrices P ∈ Fm×m, Q ∈ Fn×n, Rj ∈ Fdj×dj , j = 2, . . . , k, so that

[̂b ∣ Â] = P ∗[b ∣ A] [ 1 0
0 Q

] ≡ [ b1 A11 0
0 0 A22

] ; (2.7)

[B̂ ∣ Â] = P ∗[B ∣ A] [ R 0
0 Q

] ≡ [ B1 0 A11 0
0 0 0 A22

] ; (2.8)

and

1 In the literature, this product is usually defined in the opposite order (as the tensor-matrix product 
X ×1 A). We deviate here from this convention in order to stay notationally consistent through the formu-
lations of linear approximation problems in (2.1)–(2.3).
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B̂ = R∗k ×k (⋯ ×3 (R∗2 ×2 (P ∗ ×1 B )) ⋯) ≡ diagk(B1,0),

Â = P ∗AQ ≡ [ A11 0
0 A22

] ,
(2.9)

where diagk(⋯) forms a k-way block diagonal tensor, a direct sum of its k-way tensor 
arguments. Corresponding transformations of the unknown objects,

x̂ = Q∗x, X̂ = Q∗XR, X̂ = R∗k ×k (⋯ ×3 (R∗2 ×2 (P ∗ ×1 X )) ⋯),

together with conformal partitionings

x̂ = [ x1

x2
] , X̂ = [ X11

X21

X12

X22
] , X̂ = [Xi1,i2,...,ik ], ij = 1,2, j = 1,2, . . . , k, (2.10)

separate the original problems (2.1)–(2.3) into two, four, and 2k independent subprob-
lems, respectively. Then

A11x1 ≈ b1, A22x2 ≈ 0; (2.11)

A11X11 ≈ B1, A11X12 ≈ 0, A22X21 ≈ 0, A22X22 ≈ 0; (2.12)

and

A11 ×1 X1,1,...,1 ≈ B1, A11 ×1 X1,i2,...,ik ≈ 0, A22 ×1 X2,1,...,1 ≈ 0,

A22 ×1 X2,i2,...,ik ≈ 0,
(2.13)

where (i2, . . . , ik) ∈ {1, 2}k−1 but (i2, . . . , ik) ≠ (1, . . . , 1). Clearly, in all three cases only 
the first problem needs to be solved, all the other have zero solutions.

Moreover, the unitary matrices P , Q, R, Rj, j = 2, . . . , k, can always be chosen in such 
a way that:

(CP1) The matrix A11 ∈ Fμ×ν is of full column rank ν.
(CP2) The vector b1 ∈ Fμ is nonzero.

● The matrix B1 ∈ Fμ×δ is of full column rank δ.
● The tensor B1 ∈ Fμ×δ2×⋯×δk has j-mode matricizations B{j}1 of full row rank δj (or 

equivalently, all j-mode co-fibers of B1 are linearly independent), for j = 2, . . . , k.

Let A11 have ξ distinct nonzero singular values with multiplicities μi and μξ+1 ≡
dim(N (A∗11)), and let Ui be matrices having orthonormal bases of left singular vector 
subspaces of A11 as their columns. Then:

(CP3) The μ1 = . . . = μξ = μξ+1 = 1 and U∗i b1 ∈ F are nonzero, for i = 1, . . . , ξ, ξ + 1.
● The matrices U∗i B1 ∈ Fμi×δ are of full row rank μi, for i = 1, . . . , ξ, ξ + 1.
● The matrices U∗i B{1}1 ∈ Fμi×(∏

k
j=2 δj) are of full row rank μi, for i = 1, . . . , ξ, ξ + 1.
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The subproblems

A11x1 ≈ b1, A11X11 ≈ B1, and A11 ×1 X1,1,...,1 ≈ B1 (2.14)

satisfying (CP1)–(CP3) are called the single (or vector), multiple (or matrix), and tensor 
right-hand side core problem within (2.1)–(2.3), respectively. The core problem is always 
given uniquely up to a unitary transformation, because such transformation does not 
change its fundamental properties (CP1)–(CP3). In other words, in the vector right-
hand side case, the particular core problem matrix [b1, A11] has to be seen only as a 
representative of the set of all possible matrices

{ [̃b1, Ã11] ∶ Ã11 = P ∗1 A11Q1, b̃1 = P ∗1 b1, P ∗1 = P −11 , Q∗1 = Q−11 }

representing the same core problem. Similar result holds in the matrix and tensor right-
hand side case.

Properties (CP1)–(CP3) imply a lot of important properties of core problems, in 
particular, the core problems are the smallest (in terms of dimensions) subproblems that 
can be obtained by unitary transformations giving the block partitionings of the form 
(2.7)–(2.9). Zero solutions of the other subproblems in (2.11)–(2.13) together with the 
smallest size of core problems indicate that the core problems contain all the sufficient 
and only the necessary information for solving the original problems (2.1)–(2.3). Further 
(CP1)–(CP3) imply, e.g., that:

(CP4) Matrices [b1, A11], [B1, A11], and [B{1}1 , A11] are of full row rank μ.

In the case of matrix right-hand side, multiplicities of singular values of A11 and [B1, A11]
are bounded by δ, etc.

It is necessary to emphasize that for the core problem with a single right-hand side, 
the properties (CP1)–(CP3) allow to prove that its always uniquely TLS solvable (see 
[18]). Let x1,TLS be the uniquely given TLS solution of the core problem. Combining 
(2.7) with (2.10) (left equation) we get that the vector

x = Q [ x1,TLS
0 ]

is the TLS solution of the original problem (2.1) with minimum 2-norm (if such a so-
lution exists), or the nongeneric solution with minimum 2-norm otherwise (see [23] for 
the definition of the nongeneric solution). In this way the core reduction simplifies the 
analysis and solution of TLS problems with d = 1. Note that for problems with a matrix 
or tensor right-hand side (see [4] and [10]) the core problem may stay unsolvable in the 
TLS sense.
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3. Tensor models

Let us consider the matrix (multiple) right-hand side linear approximation problem 
A(X) ≡ AX ≈ B (see (1.2) and (2.2)) with the linear mapping A ∶ Fn×d �→ Fm×d, 
A ∈ L (Fn×d, Fm×d). The vectorization of the matrices X and B rearranges

AX ≈ B to (I ⊗ A) vec(X) ≈ vec(B), (3.1)

where ⊗ is the Kronecker product, and vec(X) stacks the columns of X in one long 
column vector. The corrected problem (A + E)X = B + G (see (1.3) and (2.5)) then 
becomes

(I ⊗ (A + E)) vec(X) = vec(B + G),

( (I ⊗ A)
�           !           "

A

+ (I ⊗ E)
�           !           "

E

) vec(X) = vec(B) + vec(G).

The mapping-perturbation E follows the Kronecker-product structure of A.
Thus, for the matrix right-hand side TLS problem (2.5), the search-set E for the 

data corrections (see (1.3)) is restricted to an (mn)-dimensional proper subspace of 
L (Fn×d, Fm×d) isomorphic to the vector space Fm×n (and the subspace {Id ⊗ E ∶ E ∈
Fm×n} of F(md)×(nd)). As discussed already in [5], this restriction is the key factor lim-
iting the TLS solvability of (2.2).

One way to overcome this fundamental difficulty is to allow for more general correc-
tions of the given data. Thus here we study several generalizations of the TLS problem 
(2.5) relaxing the restrictions by enriching the search-set. First, we consider a bilinear 
model and derive a generalization of the core reduction for this case. A note on models 
with higher Kronecker rank represented by sums of bilinear models follows. Finally, full 
tensor models are described; see the illustration in Fig. 1.

We show that in the case of full tensor model, the approximation problem can be 
interpreted (employing the vectorization similarly as in (3.1)) as the standard vector 
(single) right-hand side problem. There the solvability is simpler, better understood and 
the solution can be constructed through the unique (and always existing) solution of 
its core problem. Consequently, the enlargement of the search set E from the smallest 
(corresponding the standard matrix right-hand sided models (2.5)) to the largest (cor-
responding to the full tensor models) is accompanied by improving the TLS solvability 
properties of the approximation problems themselves, and also the core problems within.

3.1. Generalization to bilinear model

One of the simplest generalizations of the mapping is a modification of (3.1) to

ALXA∗R ≈ B or (AR ⊗ AL) vec(X) ≈ vec(B) (3.2)
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Fig. 1. Illustration of linear approximation problems with the matrix right-hand side with differently struc-
tured mapping. Left: The model is realized by the only matrix (highly structured tensor mapping). Right:
The model is fully general, i.e., realized by a general tensor of fourth-order.

for a vectorization of X ∈ Fn×d and B ∈ Fm×c. The mapping is realized by a pair of 
matrices AL ∈ Fm×n and AR ∈ Fc×d. Such problems have been studied, e.g., in [13, 
Sect. 3] or [14]. A generalization of the TLS formulation is straightforward.

Definition 3.1. Let ALXA∗R ≈ B be an approximation problem (see (3.2)). The mini-
mization problem

min
G ∈ Fm×c

EL ∈ Fm×n

ER ∈ Fc×d

∥[ G EL

E∗R 0 ]∥
F

subject to (AL + EL)X(AR + ER)∗ = (B + G) (3.3)

is called the TLS problem with a bilinear model and a matrix right-hand side.

The vectorization and the corresponding rearranging then reveals the structure of the 
corrected problem,

((AR + ER) ⊗ (AL + EL)) vec(X) = vec(B + G),

( (AR ⊗ AL)
�                         !                         "

A

+ (ER ⊗ AL) + (AR ⊗ EL) + (ER ⊗ EL)
�                                                                                                                           !                                                                                                                           "

E

) vec(X) = vec(B) +vec(G). (3.4)

One can see that the mapping-perturbation E now has a significantly more complicated 
Kronecker-product structure. With d > 1, the search-set E (see (1.3)) is restricted to 
an (mn + cd)-dimensional proper submanifold of L (Fn×d, Fm×c) homeomorphic to the 
vector space Fm×n × Fc×d = {(EL, ER) ∶ EL ∈ Fm×n, ER ∈ Fc×d}. Note that the TLS 
solvability of (3.2)–(3.3) is under investigation.

Motivated by the core reduction for problems with a matrix model and matrix right-
hand side [7], we want to generalize the core problem concept to (3.2). Let us consider 
the following unitary transformation

ÂLX̂Â∗R ≡ (P ∗ALQ)(Q∗XR)(R∗A∗RK) ≈ (P ∗BK) ≡ B̂, (3.5)
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where P −1 = P ∗, Q−1 = Q∗, K−1 = K∗, R−1 = R∗ are unitary matrices. We are looking 
for matrices

P ∗BK ≡ [ B1 0
0 0 ] , P ∗ALQ ≡ [AL,11 0

0 AL,22
] , K∗ARR ≡ [AR,11 0

0 AR,22
] ,

where B1, AL,11, AR,11 have minimal dimensions over all unitary transformations yield-
ing the same block structure. Conformal partitioning of X̂ then would split the original 
problem to four subproblems

AL,11X11A
∗
R,11 ≈ B1

and AL,11X12A
∗
R,22 ≈ 0, AL,22X21A

∗
R,11 ≈ 0, AL,22X22A

∗
R,22 ≈ 0,

(3.6)

where only the first needs to be solved, since X12 = 0, X21 = 0, X22 = 0. The following 
definition formally introduces the desired core problem.

Definition 3.2. The subproblem

AL,11X11A
∗
R,11 ≈ B1

(see (3.6)) is called the core problem within a linear approximation problem ALXA∗R ≈
B (see (3.2)), if AL,11, AR,11 and B1 are minimally dimensioned (and AL,22, AR,22
maximally dimensioned) subject to the unitary transformation

P ∗BK ≡ [ B1 0
0 0 ] , P ∗ALQ ≡ [AL,11 0

0 AL,22
] , K∗ARR ≡ [AR,11 0

0 AR,22
] ,

where P ∗ = P −1, Q∗ = Q−1, K∗ = K−1, R∗ = R−1.

We show that such core problem can be revealed in three subsequent steps:

3.1.1 Transformation of the system matrices;
3.1.2 Transformation of the right-hand side; and
3.1.3 Final permutation.

Note that in the standard matrix (multiple) right-hand side case an extra step of right-
hand side preprocessing is required; see [7]. This part can be skipped here since the 
transformation of B is realized implicitly during the other steps. We now describe the 
process in detail.

3.1.1. Transformation of the system matrices
We start with modification of the model matrices to simplest, in particular diagonal, 

forms. Consider the SVDs of AL and AR,
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AL = ULΣV ∗L , UL ∈ Fm×m, Σ ∈ Rm×n, VL ∈ Fn×n,

AR = URΨV ∗R, UR ∈ Fc×c, Ψ ∈ Rc×d, VR ∈ Fd×d,
(3.7)

where U∗L = U−1L , V ∗L = V −1L , U∗R = U−1R , V ∗R = V −1R . Let AL and AR have ξ and ζ distinct
nonzero singular values

σ1 > σ2 > ⋯ > σξ > 0 and ψ1 > ψ2 > ⋯ > ψζ > 0, (3.8)

and let mi, i = 1, . . . , ξ, and cj , j = 1, . . . , ζ be their multiplicities, respectively, i.e., 
∑ξ

i=1 mi = rank(AL) and ∑ζ
j=1 cj = rank(AR). Further denote mξ+1 ≡ m − rank(AL), 

nξ+1 ≡ n − rank(AL), cζ+1 ≡ c − rank(AR), and dζ+1 ≡ d − rank(AR). The problem (3.2)
can be then transformed to

(U∗LALVL)Z(V ∗RA∗RUR) = ΣZΨT ≈ F, where F ≡ U∗LBUR, Z ≡ V ∗LXVR. (3.9)

Both system matrices are now diagonal.

3.1.2. Transformation of the right-hand side
Next, we need to get as many zero rows and columns in the right-hand side as possible, 

while preserving the diagonal structure of the system matrices. Consider the partitioning

F =
⎡⎢⎢⎢⎢⎢⎣

F1,1 ⋯ F1,ζ+1
⋮ ⋱ ⋮

Fξ+1,1 ⋯ Fξ+1,ζ+1

⎤⎥⎥⎥⎥⎥⎦
, where Fi,j ∈ Fmi×cj , (3.10)

i = 1, 2, . . . , ξ, ξ + 1, j = 1, 2, . . . , ζ, ζ + 1. Denote μi and γj ranks of individual block-rows 
and block-columns of F , respectively. Consider the following two sets of SVDs

[Fi,1, . . . , Fi,ζ+1] = SL,iΘL,iW
∗
L,i, SL,i ∈ Fmi×mi , ΘL,i ∈ Rmi×μi , WL,i ∈ Fc×μi ,

⎡⎢⎢⎢⎢⎢⎣

F1,j
⋮

Fξ+1,j

⎤⎥⎥⎥⎥⎥⎦
= SR,jΘR,jW

∗
R,j , SR,j ∈ Fm×γj , ΘR,j ∈ Rγj×cj , WR,j ∈ Fcj×cj ,

where S∗L,i = S−1L,i, W ∗
R,j = W −1

R,j are square unitary matrices, ΘL,i is of full column rank 
μi, ΘR,j is of full row rank γj , and WL,i, SR,j have mutually orthonormal columns, i.e., 
W ∗

L,iWL,i = Iμi
, S∗R,jSR,j = Iγj

. Define unitary matrices

SU ≡ diag(SL,1, . . . , SL,ξ, SL,ξ+1), SV ≡ diag(SL,1, . . . , SL,ξ, Inξ+1 ),
WU ≡ diag(WR,1, . . . ,WR,ζ ,WR,ζ+1), WV ≡ diag(WR,1, . . . ,WR,ζ , Idζ+1 ).

(3.11)

Since S∗UΣSV = Σ and W ∗
UΨWV = Ψ, the problem (3.9) can be transformed to

(S∗UΣSV )(S∗V ZWV )(W ∗
V ΨTWU ) = Σ(S∗V ZWV )ΨT ≈ (S∗UFWU ), (3.12)
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while preserving the structure of system matrices, and producing the right-hand side

S∗UFWU =
⎡⎢⎢⎢⎢⎢⎣

S∗L,1F1,1WR,1 ⋯ S∗L,1F1,ζ+1WR,ζ+1

⋮ ⋱ ⋮
S∗L,ξ+1Fξ+1,1WR,1 ⋯ S∗L,ξ+1Fξ+1,ζ+1WR,ζ+1

⎤⎥⎥⎥⎥⎥⎦
.

The matrices

S∗L,i[Fi,1, . . . , Fi,ζ+1] = ΘL,iW
∗
L,i and

⎡⎢⎢⎢⎢⎢⎣

F1,j
⋮

Fξ+1,j

⎤⎥⎥⎥⎥⎥⎦
WR,j = SR,jΘR,j

have μi nonzero and mutually orthogonal rows (followed by mi − μi zero rows), and γj
nonzero and mutually orthogonal columns (followed by cj −γj zero columns), respectively. 
Thus

S∗L,iFi,jWR,j ≡ [ Hi,j 0mi,cj−γj

0mi−μi,γj
0mi−μi,cj−γj

] , Hi,j ∈ Fμi×γj , (3.13)

and also [Hi,1, . . . , Hi,ζ+1] and [HT
1,j , . . . , H

T
ξ+1,j]T are of full row rank, having mutually 

orthogonal rows.

3.1.3. Final permutation
Finally, we construct permutation matrices in order to aggregate the relevant informa-

tion revealed in the nonzero blocks of the right-hand side, while still keeping the system 
matrices as diagonal as possible. Let us consider two pairs of permutation matrices

ΠL,U ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ Iμ1
0 ] 0 0 [ 0

Im1−μ1
] 0 0

⋱ ⋮ ⋱ ⋮
0 [ Iμξ

0 ] 0 0 [ 0
Imξ−μξ

] 0

0 ⋯ 0 [ Iμξ+1
0 ] 0 ⋯ 0 [ 0

Imξ+1−μξ+1
]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ΠL,V ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[ Iμ1
0 ] 0 [ 0

Im1−μ1
] 0 0

⋱ ⋱ ⋮
0 [ Iμξ

0 ] 0 [ 0
Imξ−μξ

] 0

0 ⋯ 0 0 ⋯ 0 Inξ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and ΠR,U , ΠR,V ; the second pair is fully analogous to the first, but with ms, ns, μs, and 
ξs replaced by cs, ds, γs, and ζs, respectively.

Recall that the steps (3.9) and (3.12) together transform the original problem (3.2)
to

178



I. Hnětynková et al. / Linear Algebra and its Applications 577 (2019) 1–20 13

(S∗UU∗LALVLSV
�                                       !                                       "

Σ

)(S∗V V ∗LXVRWV )(W ∗
V V

∗
RA∗RURWU

�                                                !                                                "
ΨT

) ≈ (S∗UU∗LBURWU ). (3.14)

Then

ΠT
L,U (S∗UU∗LALVLSV )ΠL,V = diag(

AL,11
2                                                                                                                          3                                                                                                                          4
diag(σ1Iμ1 , σ2Iμ2 , . . . , σξIμξ

,0μξ+1,0) ,

diag(σ1Im1−μ1 , σ2Im2−μ2 , . . . , σξImξ−μξ
,0mξ+1−μξ+1,nξ+1 )

�                                                                                                                                                                                                    !                                                                                                                                                                                                    "
AL,22

) ≡ [AL,11 0
0 AL,22

] ,

ΠT
R,U (W ∗

UU
∗
RARVRWV )ΠR,V = diag(

AR,11
2                                                                                                                           3                                                                                                                           4
diag(ψ1Iγ1 , ψ2Iγ2 , . . . , ψζIγζ

,00,γζ+1 ) ,

diag(ψ1Ic1−γ1 , ψ2Ic2−γ2 , . . . , ψζIcζ−γζ
,0dζ+1,cζ+1−γζ+1 )

�                                                                                                                                                                                       !                                                                                                                                                                                      "
AR,22

) ≡ [AR,11 0
0 AR,22

] ,

and

ΠT
L,U (S∗UU∗LBURWU )ΠR,U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1,1 ⋯ H1,ζ+1 0
⋮ ⋱ ⋮ ⋮

Hξ+1,1 ⋯ Hξ+1,ζ+1 0
0 ⋯ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ [ B1 0
0 0 ] . (3.15)

3.1.4. Summary of the transformation
The whole core problem reduction can be summarized in the following key steps:

ALXA∗R ≈ B (see (3.2)),
(U∗LALVL

�                !                "
Σ

)(V ∗LXVR

�             !            "
Z

)(U∗RARVR

�                   !                   "
Ψ

)∗ ≈ U∗LBUR

�             !             "
F

(see (3.9)),

(
2           3           4
S∗UΣSV ) (S∗V ZWV )(

2                  3                  4
W ∗

UΨWV )∗ ≈ S∗UFWU (see (3.12), (3.14)),
(ΠT

L,UΣΠL,V

�                            !                            "
)(ΠT

L,V S
∗
V ZWV ΠR,V

�                                                        !                                                        "
)(ΠT

R,UΨΠR,V

�                               !                               "
)∗ ≈ ΠT

L,US
∗
UFWUΠR,U

�                                                       !                                                       "
,

[AL,11 0
0 AL,22

] [ X11 X12
X21 X22

] [A
∗
R,11 0
0 A∗R,22

] ≈ [ B1 0
0 0 ] .

A comparison with (3.5) gives the transformation matrices

P ≡ ULSUΠL,U , Q ≡ VLSV ΠL,V , K ≡ URWUΠR,U , and R ≡ VRWV ΠR,V .

Moreover, the constructed problem has several notable properties:
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(CP1) Matrices AL,11 and AR,11 are of full column rank.
(CP2–3) 2 Let AL,11 have ξ distinct singular values with multiplicities μi and μξ+1 ≡

dim(N (A∗L,11)), and let UL,i be matrices having orthonormal bases of left 
singular vector subspaces of AL,11 as their columns.
Let AR,11 have ζ distinct singular values with multiplicities γj and γζ+1 ≡
dim(N (A∗R,11)), and let UR,j be matrices having orthonormal bases of left 
singular vector subspaces of AR,11 as their columns.
The matrices U∗L,iB1 are of full row rank μi, i = 1, 2, . . . , ξ, ξ + 1, and B1UR,j of 
full column rank γj , j = 1, 2, . . . , ζ, ζ + 1; see (3.15).

These properties further imply in particular:

(CP4) Matrices [B1, AL,11] and [B∗1 , AR,11] are of full row rank.

Note that in the standard matrix right-hand side case, the preprocessing ensures 
that B1 is of full column rank (possibly having mutually orthogonal columns). Here we 
obtained B1 with block-columns having this property; the size of these block-columns 
is given by the multiplicities of singular values of AR. Clearly, by considering c = d and 
AR ≡ Id we get the standard preprocessed core problem within ALXA∗R = ALXId =
ALX ≈ B as in [7].

In [7, Sect. 4.1, pp. 926–929], it was shown that for the matrix right-hand side case 
the properties (CP1)–(CP3) imply the minimality of the obtained subproblem and thus 
ensure that the transformation is the core reduction. The following theorem summarizes 
analogous result for the transformation derived above. The proof is a generalization of 
the proof from [7], thus we omit it here.

Theorem 3.3. The unitary transformation developed in sections 3.1.1–3.1.3 is the core 
problem revealing transformation, i.e., the system matrices AL,11, AR,11 and the right-
hand side matrix B1 form the core problem

AL,11X11A
∗
R,11 ≈ B1

within ALXA∗R ≈ B.

Consequently, for the approximation problems with multiple observations on bilinear 
models, we are able to extract necessary and sufficient information analogously as in [7]
for matrix models. It is worth to note that similarly as in the matrix case, the existence 
of a TLS solution of the core problem given in Theorem 3.3 is not ensured; see [4] or [11]
for the detailed analysis of solvability of matrix core problems.

2 The properties (CP2) and (CP3) (see section 2.2, or [7, p. 925], or [4, p. 864]) here coincide while being 
denoted (CP2–3) both together.
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3.2. Note on models with higher Kronecker rank

The next step in generalization of problems (3.1) and (3.2) (while further enlarging 
the search-set) can be considering a sum of several bilinear models

L

∑
�=1

AL,�XA∗R,� ≈ B, or (
L

∑
�=1

(AR,� ⊗ AL,�)) vec(X) ≈ vec(B), (3.16)

after a vectorization of X ∈ Fn×d and B ∈ Fm×c. The mapping is realized by L pairs of 
matrices AL,� ∈ Fm×n and AR,� ∈ Fc×d, simply saying it is of Kronecker rank L.

Problems (3.2) and (3.16) differ only in the number of summands on the left-hand 
side. Thus, a TLS problem can be defined analogously to the Definition 3.1. On the other 
hand, the generalization of the core problem reduction is questionable, since for L ≥ 2 the 
left (and also right) matrices AL,� (AR,�) have in general no common singular vectors, i.e., 
no common SVD. For L = 2 one could consider the so-called generalized SVD (GSVD) 
(see, e.g., [3, Sect. 6.1.6, pp. 309–311]) which delivers a common SVD-like decomposition 
of a pair of matrices, e.g., in the form AL,1 = U1Σ1V

−1 and AL,2 = U2Σ2V
−1. However, 

the common factor V is not unitary and thus it does not preserve the (Frobenius) norm 
used in the minimization in the TLS formulation.

We see that the generalization of the core reduction would require for example some 
symmetry to be present in (3.16). This is the case when the problem contains only 
two summands on the left-hand side (L = 2) with two pairs of matrices conjugated to 
each other (possibly up to a sign) or, moreover, with two of them being identities. This 
includes in particular the cases

AX + XM∗ ≈ B, AX ± XA∗ ≈ B, AXM∗ ± MXA∗ ≈ B,

AXM∗ + X ≈ B, AXA∗ ± X ≈ B, AXA∗ ± MXM∗ ≈ B,
(3.17)

i.e., the problems resemble the Sylvester, Lyapunov, or generalized Lyapunov equation 
in its continuous or discrete form.

3.3. Generalization to full tensor model

Now we turn to a fully general linear mapping A ∈ L (Fn×d, Fm×c) represented by 
a tensor of fourth order. Consider a general linear approximation problem (1.2) of the 
form

A ×((3,4),(1,2)) X ≈ B, where A ∈ Fm×c×n×d, X ∈ Fn×d, B ∈ Fm×c, (3.18)

and the product ×((3,4),(1,2)) means that the third- and fourth-mode fibres of the object 
on its left are multiplied with the first- and second-mode fibres of the object on its right, 
respectively. Then (3.18) can be rewritten in the componentwise notation as
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n

∑
k=1

d

∑
l=1

ai,j,k,l ⋅ xk,l ≈ bi,j , or
(n,d)

∑
(k,l)=(1,1)

a(i,j),(k,l) ⋅ x(k,l) ≈ b(i,j)

or employing multiindices (i, j) and (k, l) sorted in the lexicographical order. The last no-
tation is in fact the standard matrix-vector product of a matrix A{1,2} ∈ F(mc)×(nd) having 
entries a(i,j),(k,l) on the (i, j)th row and (k, l)th column, the so-called {1, 2}-modes ma-
tricization of the tensor A, and the long vector vec(X) ∈ F(nd) having entries x(k,l). 
Consequently, we formally get

A{1,2}vec(X) ≈ vec(B). (3.19)

All previously discussed approximation problems are special cases of (3.19). A com-
parison of (3.19) with (3.1), (3.2), and (3.16) reveals that in those cases, the fourth-order 
tensor A has a specific structure, namely

A{1,2} = I ⊗ A, or AR ⊗ AL, or
L

∑
�=1

AR,� ⊗ AL,� ∈ F(mc)×(nd).

Furthermore, in the important cases of Sylvester-like or Lyapunov-like problems (3.17), 
we have

A{1,2} = (I ⊗ A) + (M ⊗ I), (I ⊗ A) ± (A ⊗ I), (M ⊗ A) ± (A ⊗ M),
(M ⊗ A) + (I ⊗ I), (A ⊗ A) ± (I ⊗ I), (A ⊗ A) ± (M ⊗ M).

Obviously, the tensors A above are highly structured and symmetric. This structure can 
also be seen by using the {1,3}-modes matricization of A, i.e., ai,j,k,l is in the matrix 
A{1,3} ∈ F(mn)×(cd) placed in the (i, k)th row and (j, l)th column. Then

A{1,3} = vec(A) vec(I)T, vec(AL) vec(AR)∗,
L

∑
�=1

vec(AL,�) vec(AR,�)∗,

which is a rank-one matrix for problems (3.1) and (3.2), and at most rank L matrix for 
problem (3.16). Similarly, for the Sylvester-like and Lyapunov-like problems (3.17) the 
matrix is of rank at most two.

Concerning the TLS definition for (3.2) introduced in Definition 3.1 (and its anal-
ogy for (3.16)), it is important to note that whenever X is multiplied from both sides, 
the componentwise corrections of the individual matrices AL, AR, AL,�, AR,� do not 
represent direct componentwise corrections of the tensor; see in particular (3.4). For ex-
ample, based on the {1,3}-modes matricization one can see, that the correction in the 
case (3.2)–(3.4) represents a rank-three update of the tensor A. We now follow a different 
idea, where such restrictions on corrections allowed for the model are not present.
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3.3.1. TLS definition and basic solvability results
The following definition introduces a TLS formulation for the general problem (3.18).

Definition 3.4. Let A ×((3,4),(1,2)) X ≈ B be an approximation problem (see (3.18)). The 
minimization problem

min
G ∈ Fm×c

E ∈ Fm×c×n×d

(∥G∥2
F + ∥E ∥2) 1

2 subject to (A + E ) ×((3,4),(1,2)) X = B + G (3.20)

is called the full-tensor-mapping TLS problem with a matrix right-hand side.

In the definition above, the search-set E of the mapping-perturbation E (see (1.3)) 
covers the whole space L (Fn×d, Fm×c), contrary to the cases discussed in the previous 
sections. This fact is particularly important, because the richness of the set E allows us to 
reshape (3.18) based on (3.19) into a vector (single) right-hand side problem representing 
the simplest and well studied case of TLS problems.

Theorem 3.5. Let (3.18)–(3.20) be a matrix right-hand side TLS problem with a general 
tensor mapping. Let (2.1)–(2.4) be the corresponding vector right-hand side TLS problem 
with

A ≡ A{1,2}, E ≡ E{1,2} ∈ F(mc)×(nd), x ≡ vec(X) ∈ Fnd,

and b ≡ vec(B), g ≡ vec(G) ∈ Fmc,
(3.21)

i.e., A is the {1, 2}-matricization of A, and x, b, and g are vectorizations of matrices X, 
B, and G, respectively. Then these two TLS problems are equivalent, i.e., x represents a 
TLS solution of (2.1)–(2.4) if and only if X represents a TLS solution of (3.18)–(3.20).

Proof. Since matricization and vectorization represent only a reshaping of arrays, we only 
focus on the minimization. The search-set for mapping perturbations covers the whole 
space of all linear mappings in both cases. Since the norm is in both cases essentially the 
same, we directly get

∥[g,E]∥F = (∥g∥2
2 + ∥E∥2

F ) 1
2 = (∥vec(G)∥2

2 + ∥E{1,2}∥2
F ) 1

2 = (∥G∥2
F + ∥E ∥2) 1

2

which finishes the proof. ◻

Note that an analogous result can be formulated in a slightly more general way. If the 
search-set E for the mapping-perturbation E in (1.3) covers the whole space of all linear 
mappings L (U , V ), then the TLS problem can be reformulated as a vector (single) 
right-hand side problem (2.1)–(2.4).

Consequently, basic solvability results available for vector right-hand side TLS prob-
lems (see, e.g., [2], [23]) can be transferred to TLS problems defined in Definition 3.4 for 
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full tensor models and a matrix right-hand side. For the vectorized problem (3.19), there 
is also a core reduction available with the resulting core problem having the unique TLS 
solution; see [18]. Note that there are questions related to the meaning of the vectorized 
core reduction if the original problem has some structured form, as indicated by the 
analysis in [10] for problems with structured right-hand sides.

3.3.2. Relation of generalization approaches
In the view of Theorem 3.5, it is interesting to observe that the problem (3.18) with 

the full tensor mapping can be always rewritten to the form (3.16) with a sum of bilinear 
models.

Let us consider the (1, 3)-modes slices of A ∈ Fm×c×n×d, i.e., (cd) subarrays 
in Fm×1×n×1. Denote A∶,j,∶,l ∈ Fm×n a matrix trivially isomorphic with the (j, l)th 
(1, 3)-modes slice, j = 1, 2, . . . , c, l = 1, 2, . . . , d. Then the matricization A{1,2} represents 
a two-way array of these matrices

A{1,2} =
⎡⎢⎢⎢⎢⎢⎣

A∶,1,∶,1 ⋯ A∶,1,∶,d
⋮ ⋱ ⋮

A∶,c,∶,1 ⋯ A∶,c,∶,d

⎤⎥⎥⎥⎥⎥⎦
=

c

∑
j=1

d

∑
l=1

(Mj,l ⊗ A∶,j,∶,l), Mj,l ≡ e
(c)
j e

(d)
l

T
∈ Rc×d,

where e(�)k stands for the ith Euclidean vector of length �, i.e., the ith column of I�. Thus 
the problem A ×((3,4),(1,2)) X ≈ B can be, after a vectorization

A{1,2} vec(X) ≈ vec(B), reshaped back to
c

∑
j=1

d

∑
l=1

A∶,j,∶,lXMT
j,l ≈ B. (3.22)

We see that (3.22) has now the same structure as (3.16) with L = cd, AL,� being 
(1, 3)-modes slices of A, and AR,� forming the Euclidean basis of Fc×d. This links the 
full tensor problem (3.18) back to the structured problem (3.16).

However, there is a substantial difference between the approach represented by a 
subsequent generalization of the TLS formulations from (3.1), through (3.2), to (3.16), 
and the TLS formulation represented by Definition 3.4. Following (3.22), the corrected 
system (3.20) is reshaped from

(A + E ) ×((3,4),(1,2)) X ≈ (B + G) to
c

∑
j=1

d

∑
l=1

(A∶,j,∶,l + E∶,j,∶,l)XMT
j,l ≈ (B + G).

Thus here the mapping-perturbation E affects only the matrices on the left of X, on 
the contrary to formulations analyzed in sections 3.1 and 3.2. We see that this last TLS 
formulation does not follow the nested structure of the previous generalizations. On the 
other hand, the search-set E now covers the whole space L (Fn×d, Fm×c).
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4. Conclusions

We have shown that the standard matrix right-hand side TLS problem AX ≈ B, 
where the model is realized by a single matrix A (i.e., by the “one-side-product”), can 
be extended in several ways. First, we considered the bilinear model represented by a 
pair of matrices, defined a straightforward TLS minimization problem and derived the 
core reduction for this case. Generalization to problems with a sum of bilinear models 
was discussed. Then, a fully general tensorized model was introduced allowing to reshape 
(vectorize) the problem to a single right-hand side approximation problem. Thus, some 
of the TLS solvability results available for d = 1 can be adopted to this generalization. 
The whole analysis shows how the properties of the model (mapping) influence the TLS 
minimization for the corresponding approximation problem. In particular, it was proved 
that the presented enlargements of the search set E for the model corrections result in 
changes in the TLS solvability of the approximation problems (and the same holds for 
their core problems). This work, together with the results obtained in [10], represents 
another step towards investigation of a fully tensorized (general as well as structured) 
linear approximation problem

A ×((s−t+1,...,s),(1,...,t)) X ≈ B,

where the model A and the unknowns X are s-way and k-way tensors, respectively, 
multiplied in t modes, t ≤ min{s, k}, and the right-hand side B is a (s + k − 2t)-way 
tensor.

Conflict of interest statement

The authors confirm that there are no known conflicts of interest associated with this 
publication.

Acknowledgements

The authors wish to thank the anonymous referee for her/his helpful comments which 
have led to improvements of this manuscript.

References

[1] B.W. Bader, T.G. Kolda, Algorithm 862: Matlab tensor classes for fast algorithm prototyping, 
ACM Trans. Math. Software 32 (4) (2006) 635–653, https://doi .org /10 .1145 /1186785 .1186794.

[2] G.H. Golub, C.F. Van Loan, An analysis of the total least squares problem, SIAM J. Numer. Anal. 
17 (6) (1980) 883–893, https://doi .org /10 .1137 /0717073.

[3] G.H. Golub, C.F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Bal-
timore, 2013.

[4] I. Hnětynková, M. Plešinger, D.M. Sima, Solvability of the core problem with multiple right-hand 
sides in the TLS sense, SIAM J. Matrix Anal. Appl. 37 (3) (2016) 861–876, https://doi .org /10 .
1137 /15M1028339.

185



20 I. Hnětynková et al. / Linear Algebra and its Applications 577 (2019) 1–20

[5] I. Hnětynková, M. Plešinger, D.M. Sima, Z. Strakoš, S. Van Huffel, The total least squares problem 
in AX ≈ B: a new classification with the relationship to the classical works, SIAM J. Matrix Anal. 
Appl. 32 (3) (2011) 748–770, https://doi .org /10 .1137 /100813348.

[6] I. Hnětynková, M. Plešinger, Z. Strakoš, On solution of total least squares problems with multiple 
right-hand sides, PAMM Proc. Appl. Math. Mech. 8 (2008) 10815–10816, https://doi .org /10 .1002 /
pamm .200810815.

[7] I. Hnětynková, M. Plešinger, Z. Strakoš, The core problem within linear approximation problem 
AX ≈ B with multiple right-hand sides, SIAM J. Matrix Anal. Appl. 34 (3) (2013) 917–931, https://
doi .org /10 .1137 /120884237.

[8] I. Hnětynková, M. Plešinger, Z. Strakoš, Band generalization of the Golub–Kahan bidiagonalization, 
generalized Jacobi matrices, and the core problem, SIAM J. Matrix Anal. Appl. 36 (2) (2015) 
417–434, https://doi .org /10 .1137 /140968914.

[9] I. Hnětynková, M. Plešinger, J. Žáková, Modification of TLS algorithm for solving F2 linear data 
fitting problems, PAMM Proc. Appl. Math. Mech. 17 (2017) 749–750, https://doi .org /10 .1002 /
pamm .201710342.

[10] I. Hnětynková, M. Plešinger, J. Žáková, TLS formulation and core reduction for problems with 
structured right-hand sides, Linear Algebra Appl. 555 (2018) 241–265, https://doi .org /10 .1016 /j .
laa .2018 .06 .016.

[11] I. Hnětynková, M. Plešinger, J. Žáková, Solvability classes for core problems in matrix total least 
squares minimization, Appl. Math. 64 (2019) 103–128, https://doi .org /10 .21136 /AM .2019 .0252 -18.

[12] T.G. Kolda, B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51 (3) (2009) 455–500, 
https://doi .org /10 .1137 /07070111X.

[13] A. Kukush, I. Markovsky, S. Van Huffel, On consistent estimators in linear and bilinear multivari-
ate errors-in-variables models, in: S. Van Huffel, P. Lemmerling (Eds.), Total Least Squares and 
Errors-in-Variables Modeling, Kluwer Academic Publishers, Dordrecht, 2002, pp. 155–164.

[14] A. Kukush, I. Markovsky, S. Van Huffel, Consistent estimation in the bilinear multivariate errors-
in-variables model, Metrika 57 (3) (2003) 254–285, https://doi .org /10 .1007 /s001840200.

[15] C.-K. Li, X.-G. Liu, X.-F. Wang, Extension of the total least square problem using general uni-
tarily invariant norms, Linear Multilinear Algebra 55 (1) (2007) 71–79, https://doi .org /10 .1080 /
03081080600593428.

[16] C.C. Paige, Z. Strakoš, Scaled total least squares fundamentals, Numer. Math. 91 (1) (2002) 117–146, 
https://doi .org /10 .1007 /s002110100314.

[17] C.C. Paige, Z. Strakoš, Unifying least squares, total least squares and data least squares, in: S. 
Van Huffel, P. Lemmerling (Eds.), Total Least Squares and Errors-in-Variables Modeling, Kluwer 
Academic Publishers, Dordrecht, 2002, pp. 25–34.

[18] C.C. Paige, Z. Strakoš, Core problem in linear algebraic systems, SIAM J. Matrix Anal. Appl. 27 (3) 
(2006) 861–875, https://doi .org /10 .1137 /040616991.

[19] G.W. Stewart, J.-G. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
[20] C. Tobler, Low-rank Tensor Methods for Linear Systems and Eigenvalue Problems, PhD Thesis, 

ETH Zürich, Zürich, 2012, available at http://sma .epfl .ch /~ctobler /diss .pdf.
[21] S. Van Huffel (Ed.), Recent Advances in Total Least Squares Techniques and Error-in-Variables 

Modeling, Proceedings of the Second Int. Workshop on TLS and EIV, SIAM Publications, Philadel-
phia, PA, 1997.

[22] S. Van Huffel, P. Lemmerling (Eds.), Total Least Squares and Error-in-Variables Modeling. Analysis, 
Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

[23] S. Van Huffel, J. Vandewalle, The Total Least Squares Problem: Computational Aspects and Anal-
ysis, SIAM Publications, Philadelphia, PA, 1991.

[24] X.-F. Wang, Total least squares problem with the arbitrary unitarily invariant norms, Linear Mul-
tilinear Algebra 65 (3) (2017) 438–456, https://doi .org /10 .1080 /03081087 .2016 .1189493.

[25] X.-F. Wang, R.-C. Li, Monotonicity of unitarily invariant norms, Linear Algebra Appl. 466 (2015) 
254–266, https://doi .org /10 .1016 /j .laa .2014 .10 .022.

[26] M. Wei, The analysis for the total least squares problem with more than one solution, SIAM J. 
Matrix Anal. Appl. 13 (3) (1992) 746–763, https://doi .org /10 .1137 /0613047.

[27] M. Wei, Algebraic relations between the total least squares and least squares problems with more 
than one solution, Numer. Math. 62 (1) (1992) 123–148, https://doi .org /10 .1007 /BF01396223.

[28] S. Yan, K. Huang, The original TLS solution sets of the multidimensional TLS problem, Int. J. 
Comput. Math. 73 (3) (2000) 349–359, https://doi .org /10 .1080 /00207160008804902.

186



\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{R}\mathrm{I}\mathrm{X} \mathrm{A}\mathrm{N}\mathrm{A}\mathrm{L}. \mathrm{A}\mathrm{P}\mathrm{P}\mathrm{L}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 44, \mathrm{N}\mathrm{o}. 1, \mathrm{p}\mathrm{p}. 53-79

KRYLOV SUBSPACE APPROACH TO CORE PROBLEMS WITHIN
MULTILINEAR APPROXIMATION PROBLEMS: A UNIFYING

FRAMEWORK\ast 

IVETA HN\v ETYNKOV\'A\dagger , MARTIN PLE\v SINGER\ddagger , AND JANA \v Z\'AKOV\'A\ddagger 

Abstract. Error contaminated linear approximation problems appear in a large variety of
applications. The presence of redundant or irrelevant data complicates their solution. It was shown
that such data can be removed by the core reduction yielding a minimally dimensioned subproblem
called the core problem. Direct (SVD or Tucker decomposion-based) reduction has been introduced
previously for problems with matrix models and vector, or matrix, or tensor observations; and also
for problems with bilinear models. For the cases of vector and matrix observations a Krylov subspace
method, the generalized Golub--Kahan bidiagonalization, can be used to extract the core problem.
In this paper, we first unify previously studied variants of linear approximation problems under the
general framework of a multilinear approximation problem. We show how the direct core reduction
can be extended to it. Then we show that the generalized Golub--Kahan bidiagonalization yields the
core problem for any multilinear approximation problem. This further allows one to prove various
properties of core problems, in particular, we give upper bounds on the multiplicity of singular values
of reduced matrices.

Key words. (multi)linear approximation problems, error-in-variables modeling, total least
squares, core problem, orthogonal transformations, Krylov subspace methods

MSC codes. 15A06, 15A18, 15A21, 15A24, 65F20, 65F25

DOI. 10.1137/21M1462155

1. Introduction. During the last decades, wide attention has been given to the
analysis and solution of linear approximation problems contaminated by errors in the
data. Generally, they can be formulated as

(1.1) \scrA (X)\approx \frakB , \scrA \in L (U ,V ), X\in U , \frakB \in V ,

where \scrA :U  - \rightarrow V is a given linear mapping (model) between two finite-dimensional
inner-product spaces U and V over the field of real numbers (generalization to com-
plex numbers is straightforward). The right-hand side \frakB represents an observation,
or a collection of observations. When it is not contained within the range of the
mapping, \frakB \not \in R(\scrA ), only an approximate solution can be constructed.

Vector (or single) and matrix (or multiple) right-hand side problems (1.1) have
been studied for a long time; see especially [8], [41], [39], or [40] for the analysis and
[30], [25], [32] for applications. Tensor right-hand side formulations typically origi-
nate in problems where \scrA ( \cdot ) naturally outputs multidimensional data. This covers
three-dimensional imaging problems, time-dependent two-dimensional problems, or
models arising from linearization of problems depending on several parameters; see,
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for example, [9], [30], [25], [32]. Problems with natural bilinear structure of the map-
ping \scrA ( \cdot ) give rise to (1.1) with bilinear models and, typically, a matrix right-hand
side; see [22], [23] for applications.

The individual linear approximation problems can be derived one from the other
by subsequent generalization (downwards) or restriction (upwards) in the following
way:

(i) Ax\approx b where A\in \BbbR m\times n, x\in \BbbR n, b\in \BbbR m,
\updownarrow 

(ii) AX \approx B where A\in \BbbR m\times n, X \in \BbbR n\times d, B \in \BbbR m\times d,
⤡ ⤢

(iii), (iv)A\times 1 \scrX \approx \scrB , ALXA\sansT 
R \approx B

\biggl\{ 
A\in \BbbR m\times n, \scrX \in \BbbR n\times d2\times \cdot \cdot \cdot \times dk , \scrB \in \BbbR m\times d2\times \cdot \cdot \cdot \times dk ,
AL \in \BbbR m\times n,AR \in \BbbR d\times c, X \in \BbbR n\times c, B \in \BbbR m\times d,

where (i) and (ii) are the vector and matrix right-hand side problems, and (iv) has
the bilinear model. In the tensor observation problem (iii), \scrB ,\scrX are k-way tensors
and \times 1 stands for the standard 1-mode matrix-tensor product; see [21], [17], or (2.1).

1.1. The total least squares method. The principal difficulty with solving
(1.1) is the presence of errors in the data that typically results in the observation \frakB 
not being contained in R(\scrA ). In order to find a meaningful approximate solution,
we search for data corrections giving a modified compatible problem. To guarantee
the optimality in some sense, selected minimality properties of the correction norms
are prescribed, leading to methods widely known as least squares techniques. These
include basic least squares (LS), total least squares (TLS), mixed LS-TLS, data LS,
and regularized LS; see [10], [41] for an overview and references; see also [26] and [27].
Extending the basic LS from the case (i) to more general (ii)--(iv) is straightforward,
since LS assumes errors only in the right-hand side and the constructed corrections
of individual observations collected in B or \scrB are independent; see [41]. However,
this is not true for methods correcting both the model and the observation, as proved
already in [8] for the widely used TLS. This complicates analysis and solution of TLS
problems within (ii)--(iv).

For (i), TLS has been studied since the seventies; see [6], [4], [8], [36], [41]. It can
be formulated here as

(1.2) min\| [g,E]\| subject to b+ g \in R(A+E),

where R( \cdot ) is the matrix range. Equivalently, TLS searches for x\ast such that
(A + E)x\ast = b + g. The norm here and throughout the paper refers either to the
Euclidean norm of a vector , the Frobenius norm of a matrix , or their generalization
to tensors: the square root of the sum of squares of all tensor entries. Note that other
norms can also be relevant; see for example [24] and [42] for the TLS with a general
unitarily invariant norm. In the case (ii), TLS takes the form

(1.3) min\| [G,E]\| subject to R(B +G)\subseteq R(A+E).

Extensive analysis can be found in particular in the influential book [41]; see also [37],
[38], [39], [40]. Problems with more than one solution were studied in [44], [45]; for
an extension to the mixed LS-TLS minimization see [29]. The full analysis of TLS-
solvability was given later in [47] and [14]; see also [42]. For some recently proposed
novel approaches we refer the reader to randomized algorithms [46], [48], or quantum
algorithms [43], [49]. The TLS theory for problems (iii)--(iv) has not been addressed

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

2/
23

 to
 8

5.
70

.2
10

.3
0 

by
 V

ác
la

v 
A

lt 
(a

lt.
va

cl
av

@
gm

ai
l.c

om
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

188



CP WITHIN MULTILINEAR APPROXIMATION PROBLEMS 55

in full generality yet. Results for (iii) show that it is not essentially different from (ii)
from the TLS perspective; see [30], [25], [32], and also [17]. Some TLS analyses for
(iv) can found in [22] and [23].

Note that formally (ii)--(iv) can be rewritten into single right-hand side problems
using vectorization (see [21]). Denote by vec(X) a vector obtained by stacking the
columns of the matrix X below each other. Similarly vec(\scrX ) stacks all 1-mode fibers
of the tensor \scrX (ordered in the inverse lexicographical order w.r.t. their multi-indices)
in a long vector; see [21]. The linear mappings \scrA ( \cdot ) in (ii)--(iv) have, respectively,
the following structure,

(1.4) Id \otimes A, Idk
\otimes \cdot \cdot \cdot \otimes Id2

\otimes A, AR \otimes AL,

where I\ell are \ell -by-\ell identity matrices and \otimes is the Kronecker product; see [21]. The
matrices in (1.4) are then multiplied by vec(X) in (ii) and (iv), or vec(\scrX ) in (iii).
This reveals how the structure of the search set for the correction \scrE ( \cdot ) is restricted
to the given structure of the mapping \scrA ( \cdot ) in TLS. Clearly, \scrE ( \cdot ) has the form

Id \otimes E, Idk
\otimes \cdot \cdot \cdot \otimes Id2 \otimes E

in (ii)--(iii), respectively. Although we search for E in all of \BbbR m\times n, from the perspective
of the abstract setting (1.1), only a proper subspace of L (U ,V ) is involved. Similarly,
the correction (EL,ER) of the pair of matrices (AL,AR) in (iv) is sought in the whole
\BbbR m\times n \times \BbbR d\times c. The corresponding mapping correction, however, takes the form

(AR \otimes EL) + (ER \otimes AL) + (ER \otimes EL),

i.e., it lives within a proper submanifold of L (U ,V ). This gives another viewpoint
on difficulties related to extending TLS to more general problems; see [17] and [18]
for more details.

1.2. The fundamental core reduction. In addition, it is well known [8] that
even the simplest TLS minimization problem (1.2) may not have a solution for the
given data. Besides the nontrivial solvability analysis referred to previously, an im-
portant original contribution to this area is represented by a series of papers [26], [27],
[28]. Here the authors introduce the so-called core problem concept for problems (i).
They prove, that there always exists a subproblem A11x1 \approx b1 called the core problem
within Ax\approx b that contains all the necessary and only the sufficient information for
solving the original problem. The core problem can be revealed by a specific orthogo-
nal (SVD-based) transformation and has a lot of interesting properties. In particular,
it always has a unique TLS solution. Moreover, after its back-transformation we get
either the TLS solution of the original problem (if it exists) or the so-called nongeneric
solution defined in [41] (if the TLS solution does not exist), both minimal in the norm;
see [28]. Consequently, the core problem concept significantly simplifies and clarifies
the TLS theory in the case (i). Furthermore, the core reduction can also be achieved
iteratively by a well-known Krylov subspace procedure: the Golub--Kahan (sometimes
also called Golub--Kahan--Lanczos) iterative bidiagonalization [5], as proved in [28].
Note that there are also other relevant ways of extracting the core problem, e.g., by
employing randomized algorithms in the context of ill-posed data; see [48].

This fundamental data reducing concept was generalized to (ii) in a series of
papers [15], [16], [13], giving the definition of the core problem, the SVD-based core
reduction, the iterative scheme based on the band generalization of the Golub--Kahan
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iterative bidiagonalization, and finally basic results relating the structure of the core
problem to the classification with respect to the TLS solvability. Recently, the core
problem definition and the SVD-based core reduction have also been extended to (iii)
and (iv); see [17], [18]. An iterative scheme for core reduction in the cases (iii) and
(iv) has not been introduced yet.

1.3. Content and contribution of this work. In this paper, we unify and
generalize the problems (i)--(iv) under a k-linear approximation problem with a tensor
right-hand side. We extend the core reduction to this problem and describe the core
problem properties (in particular the defining minimality conditions); see section 2.
We briefly recapitulate how the Golub--Kahan iterative bidiagonalization and its band
generalization provide core reduction for problems (i) and (ii); see section 3. Then,
we show that the band bidiagonalization running k-times in parallel reveals the core
problem within any k-linear approximation problem (including (iii) and (iv)); see
section 4. The proof of the minimality is provided in section 5. Further properties
of core problems extending previous results on basic approximation problems (i)--(ii)
are analyzed.

Note that we strictly assume the exact arithmetic. Our goal is to demonstrate
that it is in principle possible to reduce maximally the given data by an iterative core
reduction provided by a generalized Golub--Kahan bidiagonalization. Computational
aspects of the considered method must also be studied. However, they are beyond
the scope of this analytical work.

2. Core problem within general multilinear approximation problem.
First, we introduce a unifying multilinear approximation problem. Then, the core
transformation for (i)--(iv) and its properties will be summarized. Finally, we extend
the results to the multilinear case.

Let us start with the basic tensor-related notation adopted from the review paper
[21]; see also [2], [20], [19]. LetAs = (ai,j)\in \BbbR ms\times ns be a matrix and \scrX = (xi1,i2,...,ik)\in 
\BbbR n1\times n2\times \cdot \cdot \cdot \times nk a k-way tensor. The s-mode matrix-tensor product As\times s \scrX is defined
entrywise as

(2.1) (As \times s \scrX )i1,...,is - 1,i,is+1,...,ik =

ns\sum 
\ell =1

ai,\ell \cdot xi1,...,is - 1,\ell ,is+1,...,ik .

As a shorthand for the multiplication of \scrX by several matrices As, s= 1,2, . . . , k, in
all the different modes (so called multilinear transformation of \scrX ), we use

(2.2) (A1,A2, . . . ,Ak | \scrX ) =A1 \times 1 (A2 \times 2 (\cdot \cdot \cdot \times k - 1 (Ak \times k \scrX ) \cdot \cdot \cdot )).

The s-mode matricization of \scrX refers to a matrix \scrX \{ s\} \in \BbbR ns\times (\Delta /ns), where \Delta \equiv \prod k
\ell =1 n\ell , that collects all the s-mode fibers (columns for s= 1, rows for s= 2, etc.) of
\scrX as columns in the inverse lexicographical order with respect to their multi-indices.
Then (2.1) can be rewritten by using the standard matrix multiplication as

(2.3) (As \times s \scrX )\{ s\} =As\scrX \{ s\} .

The vectorization of \scrX similarly refers to a vector vec(\scrX ) \in \BbbR \Delta that collects all the
entries of \scrX in the inverse lexicographical order with respect to their multi-indices.
By employing the vectorization, (2.2) can be rewritten as

(2.4) vec(A1,A2, . . . ,Ak | \scrX ) = (Ak \otimes \cdot \cdot \cdot \otimes A2 \otimes A1) vec(\scrX );

compare with (1.4).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

2/
23

 to
 8

5.
70

.2
10

.3
0 

by
 V

ác
la

v 
A

lt 
(a

lt.
va

cl
av

@
gm

ai
l.c

om
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

190



CP WITHIN MULTILINEAR APPROXIMATION PROBLEMS 57

2.1. \bfitk -linear approximation problem and TLS. Consider the k-linear ap-
proximation problem with a tensor right-hand side

(v) (A1,A2, . . . ,Ak | \scrX )\approx \scrB , where

\biggl\{ 
As \in \BbbR ms\times ns for s= 1,2, . . . , k,
\scrX \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nk, \scrB \in \BbbR m1\times m2\times \cdot \cdot \cdot \times mk .

Clearly, (v) covers all the previous formulations (i)--(iv) as special cases. For A2 =
I, . . . , Ak = I the k-linear problem reduces to A1 \times 1 \scrX \approx \scrB . On the other hand, for
k= 2 it reduces to (A1,A2 | \scrX )\approx \scrB , where \scrX and \scrB are tensor of order two (matrices),
and

vec(A1,A2 | \scrX ) = (A2 \otimes A1) vec(\scrX ) = vec(A1\scrX A\sansT 
2 ).

The TLS minimization problem can be defined for (v) as

min

\Biggl( 
\| \scrG \| 2 +

k\sum 
s=1

\| Es\| 2
\Biggr) 1

2

s.t. \exists \scrX \ast : (A1+E1,A2+E2, . . . ,Ak+Ek | \scrX \ast ) =\scrB +\scrG ;

i.e., in cases (iii) and (iv) corrections only to (A,\scrB ) and (AL,AR,B) are considered.
Now we aim to generalize core reduction to (v).

2.2. Core revealing transformation for (i)--(iv). The core revealing trans-
formation (CRT) for (i)--(iv) is realized by orthogonal matrices that we denote P , Q,
M (possibly with subindices M2, . . . ,Mk), and K. In paticular, in [28] it was shown
that \forall (A,b), \exists (P,Q):

Ax\approx b
CRT -  -  - \rightarrow (P\sansT AQ)\underbrace{}  \underbrace{}  

A\prime 

(Q\sansT x)\underbrace{}  \underbrace{}  
x\prime 

\approx (P\sansT b)\underbrace{}  \underbrace{}  
b\prime 

and the transformed problem is block-structured as follows:

(2.5) A\prime x\prime =

\biggl[ 
A11 0
0 A22

\biggr] \biggl[ 
x1

x2

\biggr] 
\approx 
\biggl[ 

b1
0

\biggr] 
= b\prime .

The original problem is therefore split into two subproblems

A11x1 \approx b1 and A22x2 \approx 0,

where only the first one needs to be solved (as, trivially, x2 = 0). If the first sub-
problem has minimal dimensions (over all such block-structure revealing orthogonal
transformations), it is called the core problem. Such a minimally dimensioned sub-
problem always exists, as shown in [28]. Note that the transformation may exist in
a degenerated (or trivial) form while yielding formally an empty matrix A22 with no
rows or no columns in some cases.

In [15], it was similarly shown for (ii) that \forall (A,B), \exists (P,Q,M):

AX \approx B
CRT -  -  - \rightarrow (P\sansT AQ)(Q\sansT XM)\approx (P\sansT BM)

and

(2.6)

\biggl[ 
A11 0
0 A22

\biggr] \biggl[ 
X11 X12

X21 X22

\biggr] 
\approx 
\biggl[ 

B1 0
0 0

\biggr] 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

2/
23

 to
 8

5.
70

.2
10

.3
0 

by
 V

ác
la

v 
A

lt 
(a

lt.
va

cl
av

@
gm

ai
l.c

om
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

191



58 I. HN\v ETYNKOV\'A, M. PLE\v SINGER, J. \v Z\'AKOV\'A

The problem (iii) was analyzed in [17] giving that \forall (A,\scrB ), \exists (P,Q,M2, . . . ,Mk):

A\times 1 \scrX \approx \scrB 
CRT -  -  - \rightarrow (P\sansT AQ)\times 1 (Q

\sansT ,M\sansT 
2 , . . . ,M

\sansT 
k | \scrX )\approx (P\sansT ,M\sansT 

2 , . . . ,M
\sansT 
k | \scrB )

and (illustrated for k= 3)

(2.7)

Finally, [18] derived for (iv) that \forall (AL,AR,B), \exists (P,Q,M,K):

ALXA\sansT 
R \approx B

CRT -  -  - \rightarrow (P\sansT ALQ)(Q\sansT XM)(M\sansT A\sansT 
RK)\approx (P\sansT BK)

and

(2.8)

\biggl[ 
AL,11 0
0 AL,22

\biggr] \biggl[ 
X11 X12

X21 X22

\biggr] \biggl[ 
A\sansT 

R,11 0

0 A\sansT 
R,22

\biggr] 
\approx 
\biggl[ 

B1 0
0 0

\biggr] 
.

Analogously to the case (i), the original problems (ii)--(iv) are split by these trans-
formations into four, 2k (eight in the above illustrated case), and four subproblems,
respectively. Only the subproblem with the nonzero right-hand side has to be solved.
If it has minimal dimensions, it is called the core problem. Consequently, core prob-
lems in the cases (i)--(iv) are subsequently

A11x1 \approx b1, A11X11 \approx B1, A11 \times 1 \scrX 11...1 \approx \scrB 1, AL,11X11A
\sansT 
R,11 \approx B1.

2.3. Necessary and sufficient conditions for the minimality. First it would
be useful to specify dimensions of individual objects in the core problems above. Let

A11, AL,11 \in \BbbR m\times n, AR,11 \in \BbbR d\times c, b1 \in \BbbR m, B1 \in \BbbR m\times d, \scrB 1 \in \BbbR m\times d2\times \cdot \cdot \cdot \times dk ,

i.e., we use the same letters for the individual dimensions of core problems as for the
original problems (see the schema in section 1), but overlined. For the core problems
within (i)--(iii), we assume that

A11 has \xi distinct nonzero singular values with multiplicities \mu i, i= 1, . . . , \xi ,

and \mu \xi +1 \equiv dim(N (A\sansT 
11)), where N ( \cdot ) is the null-space. For the core problem within

(iv), we similarly assume that

AL,11 has \xi distinct nonzero singular values with multiplicities \mu i, i= 1, . . . , \xi ,
AR,11 has \zeta distinct nonzero singular values with multiplicities \gamma j , j = 1, . . . , \zeta ,

and \mu \xi +1 \equiv dim(N (A\sansT 
L,11)), and \gamma \zeta +1 \equiv dim(N (A\sansT 

R,11)) (note that one of the null-
spaces may be trivial). Further, let

Ui \in \BbbR m\times \mu i , UL,i \in \BbbR m\times \mu i , and UR,j \in \BbbR d\times \gamma j

be matrices having orthonormal bases of left singular vector subspaces of A11, AL,11,
and AR,11, respectively, as their columns, i= 1, . . . , \xi , \xi + 1, j = 1, . . . , \zeta , \zeta + 1.

Now we are ready to explore the core problem properties. We focus on the neces-
sary and sufficient conditions for the minimality realized by a set of full column/row
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CP WITHIN MULTILINEAR APPROXIMATION PROBLEMS 59

rank conditions; see [15]. We first show them for the matrix right-hand side prob-
lem (ii). Then we briefly discuss how they change for (i), (iii), and (iv). The full
list of known properties can be found in the papers [28], [15], [16], [17], [18], and is
summarized in Appendix A.

Theorem 2.1. Let AX \approx B be a linear approximation problem and A11X11 \approx 
B1 a subproblem within, obtained by an orthogonal transformation yielding the block
diagonal structure (2.6). The subproblem has minimal dimensions (i.e., represents the
core problem), if and only if the following three conditions are satisfied:

(CP1) The matrix A11 \in \BbbR m\times n is of full column rank equal to n.

(CP2) The matrix B1 \in \BbbR m\times d is of full column rank equal to d.

(CP3) Matrices U\sansT 
i B1 \in \BbbR \mu i\times d are of full row rank equal to \mu i, i= 1, . . . , \xi , \xi + 1.

For the proof, see [15, section 4.1].
Clearly, the problem (ii) becomes (i) when d = 1. Then for the core problem,

d= 1. Consequently the condition (CP2) is reduced to b1 \not = 0 and (CP3) to u\sansT 
i b1 \not = 0,

where ui are left singular vectors of A11, i= 1, . . . ,m (while also implying \xi =m and
\mu i = 1 for all i); see [28].

The tensor right-hand side problem (iii) reduces back to (ii) for k = 2. Thus the
matrices B and B1 in the case (ii) can be seen as a tensor of the second order. In this
sense

B
\{ 1\} 
1 =B1 and B

\{ 2\} 
1 =B\sansT 

1 .

Then (CP2) says that B
\{ 2\} 
1 \in \BbbR d\times m is of full row rank and (CP3) says that U\sansT 

i B
\{ 1\} 
1 \in 

\BbbR \mu i\times d are of full row rank. To generalize (CP1)--(CP3) to (iii), i.e., to a tensor of the
order k, only (CP2) needs to be modified to the following form: Matrices

\scrB \{ s\} 1 \in \BbbR ds\times (\Delta /ds), s= 2, . . . , k,

are of full row rank equal to ds, here \Delta \equiv m \cdot 
\prod k

\ell =2 d\ell ; for more details see [17].
Finally, the problem (iv) reduces back to (ii) when c= d, AL = A, and AR = Id,

and analogously for the core problem within. From the SVD perspective, the case
(ii) core problem is in fact the case (iv) core problem, where AR,11 = Id has only one
nonzero singular value with the multiplicity d and dim(N (A\sansT 

R,11)) = 0. Thus \zeta = 1,

\gamma 1 = d, and UR,1 = Id, i.e.,

B1UR,1 =B1.

To generalize (CP1)--(CP3) to (iv), i.e., to the bilinear problem, (CP1) needs to be
extended so that both matrices AL,11 and AR,11 are of full column rank. (CP2) needs
to be modified to the following form: Matrices

B1UR,j \in \BbbR m\times \gamma j , j = 1, . . . , \zeta , \zeta + 1,

are of full column rank equal to \gamma j . In (CP3) we only formally replace matrices Ui

by UL,i; for more details see [18].

2.4. Extension to k-linear problems. Motivated by the previous derivations,
we look for orthogonal matrices Ps \in \BbbR ms\times ms , Qs \in \BbbR ns\times ns , s = 1,2, . . . , k, realizing
the orthogonal transformation of the multilinear problem (v) in the form
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(A1,A2, . . . ,Ak | \scrX )\approx \scrB 
CRT -  -  - \rightarrow \Bigl( 

P\sansT 
1 A1Q1\underbrace{}  \underbrace{}  
A\prime 

1

, P\sansT 
2 A2Q2\underbrace{}  \underbrace{}  
A\prime 

2

, . . . , P\sansT 
k AkQk\underbrace{}  \underbrace{}  
A\prime 

k

\bigm| \bigm| \bigm| (Q\sansT 
1 ,Q

\sansT 
2 , . . . ,Q

\sansT 
k | \scrX )\underbrace{}  \underbrace{}  

\scrX \prime 

\Bigr) 
\approx (P\sansT 

1 , P
\sansT 
2 , . . . , P

\sansT 
k | \scrB )\underbrace{}  \underbrace{}  

\scrB \prime 

such that

A\prime 
s =

\biggl[ 
As,11 0
0 As,22

\biggr] 
, As,11 \in \BbbR ms\times ns , s= 1,2, . . . , k,

\scrB \prime = diagk(\scrB 1,0), \scrB 1 \in \BbbR m1\times m2\times \cdot \cdot \cdot \times mk .

(2.9)

Here diagk( \cdot \cdot \cdot ) denotes a (block) diagonal tensor of order k with the arguments
(treated also as kth order tensors) on its diagonal and the zero there represents a zero
tensor of suitable dimensions, i.e., 0 \in \BbbR (m1 - m1)\times (m2 - m2)\times \cdot \cdot \cdot \times (mk - mk). The original
problem would then be split into 2k subproblems

(A1,i1i1 ,A2,i2i2 , . . . ,Ak,ikik | \scrX i1i2...ik)\approx 
\biggl\{ 
\scrB 1 if i1 = i2 = \cdot \cdot \cdot = ik = 1,
0 otherwise,

where is \in \{ 1,2\} for s= 1,2, . . . , k.
Since the k-linear approximation problem (v) represents a generalization of both

(iii) and (iv), the core transformation can be constructed by combining strategies used
for (iii) and (iv) in [17] and [18]. The basic steps are the following: The right-hand side
preprocessing (used also in the iterative approach in section 4); the transformation
of the system matrices As by employing their SVDs; the transformation of the right-
hand side tensor; and the final permutation. Since the complete transformation, even
in the cases (iii) and (iv), is very technical, we defer the description of our iterative
procedure to section 4.

Now we provide the definition of the core problem.

Definition 2.2 (core problem). Let (A1,A2, . . . ,Ak | \scrX ) \approx \scrB be a k-linear ap-
proximation problem and

(2.10) (A1,11,A2,11, . . . ,Ak,11 | \scrX 11...1)\approx \scrB 1

a subproblem within, obtained by an orthogonal transformation yielding the block di-
agonal structure (2.9). If the subproblem has minimal dimensions, then we call it the
core problem.

In order to formulate a result generalizing Theorem 2.1, we introduce some SVD-
related notation. We assume that

As,11 has \xi s distinct nonzero singular values with multiplicities \mu s,is , is = 1, . . . , \xi s,

and \mu s,\xi s+1 \equiv dim(N (A\sansT 
s,11)) for s = 1,2, . . . , k (note that k  - 1 of the null-spaces

may be trivial). Further, let

Us,is \in \BbbR ms\times \mu s,is , is = 1, . . . , \xi s, \xi s + 1, s= 1,2, . . . , k,

be matrices having orthonormal bases of left singular vector subspaces of As,11 as
their columns. Now we formulate necessary and sufficient conditions for minimality.

Theorem 2.3. Let (A1,A2, . . . ,Ak | \scrX )\approx \scrB be a k-linear approximation problem
and (A1,11,A2,11, . . . ,Ak,11 | \scrX 11...1)\approx \scrB 1 a subproblem within, obtained by an orthog-
onal transformation yielding the block diagonal structure (2.9). The subproblem has
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CP WITHIN MULTILINEAR APPROXIMATION PROBLEMS 61

minimal dimensions (i.e., represents the core problem), if and only if the following
two conditions are satisfied:

(CP1) Matrices As,11 \in \BbbR ms\times ns are of full column rank equal to ns, s =
1,2, . . . , k.

(CP2)--(CP3) Matrices U\sansT 
s,is
\scrB \{ s\} 1 \in \BbbR \mu s,is

\times (\Delta /ms) are of full row rank equal to \mu s,is ,

where is = 1,2, . . . , \xi s, \xi s + 1, s= 1,2, . . . , k.
Note that here \Delta \equiv 

\prod k
\ell =1m\ell .

Note that any further orthogonal transformation of the subproblem (2.10) al-
ready satisfying (CP1) and (CP2)--(CP3) does not affect these properties, since they
are orthogonally invariant. The proof for (v) is a generalization of the proofs for
(i)--(iv). First, we show that there exists a transformation yielding the block-diagonal
structure (2.9) determining the subproblem (2.10) satisfying the CP properties; see,
in particular, [18, sections 3.1.1--3.1.3]. Then, we prove minimality of its dimensions;
see [15, section 4.1].

Proof. Employing the full SVDs of the original matrices As = Us\Sigma sV
\sansT 
s allows us

to write the approximation problem as

(U1\Sigma 1V
\sansT 
1 , . . . ,Uk\Sigma kV

\sansT 
k | \scrX )\approx \scrB ,

i.e., after the vectorization and employing the mixed (Kronecker-matrix) product
property

(Uk \otimes \cdot \cdot \cdot \otimes U1)(\Sigma k \otimes \cdot \cdot \cdot \otimes \Sigma 1)(Vk \otimes \cdot \cdot \cdot \otimes V1)
\sansT vec(\scrX )\approx vec(\scrB ).

This further gives an orthogonally transformed problem

(\Sigma 1, . . . ,\Sigma k | \scrY )\approx \scrF , where \scrY = (V \sansT 
1 , . . . , V \sansT 

k | \scrX ), \scrF = (U\sansT 
1 , . . . ,U

\sansT 
k | \scrB );

compare with [18, section 3.1.1].
Let As and thus also \Sigma s have \xi s distinct nonzero singular values with multiplicities

\mu s,is , is = 1, . . . , \xi s, and let \mu s,\xi s+1 =dim(N (A\sansT 
s )). Note that

\sum \xi s+1
is=1 =ms. Then we

partition the tensor \scrF into a (\xi 1 + 1)\times (\xi 2 + 1)\times \cdot \cdot \cdot \times (\xi k + 1) grid of subtensors

\scrF i1,i2,\cdot \cdot \cdot ,ik \in \BbbR \mu 1,i1
\times \mu 2,i2

\times \cdot \cdot \cdot \times \mu k,ik , is = 1, . . . , \xi s, \xi s + 1, s= 1,2, . . . , k.

Now we proceed with a joint Tucker-like decomposition of each of them. In particular,
the matricization

\scrF \{ s\} \in \BbbR ms\times (\Delta /ms),

where \Delta =
\prod k

\ell =1m\ell , is accordingly partitioned into \xi s+1 block-rows, with individual
rows corresponding to the s-mode cofibers of \scrF . Let Ws,is be the orthogonal matrices
of order \mu s,is with the left singular vectors obtained from the SVDs of the individual
block-rows. Further, let

Ws,\oplus =diag(Ws,1, . . . ,Ws,\xi s ,Ws,\xi s+1)\in \BbbR ms\times ms ,

W \prime 
s,\oplus =diag(Ws,1, . . . ,Ws,\xi s , Ins - rank(As))\in \BbbR 

ns\times ns .

Then

\scrF i1,i2,\cdot \cdot \cdot ,ik =
\Bigl( 
W1,i1 ,W2,i2 , . . . ,Wk,ik

\bigm| \bigm| \bigm| diagk(\scrH i1,i2,\cdot \cdot \cdot ,ik ,0)
\Bigr) 
,
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where

\scrH i1,i2,\cdot \cdot \cdot ,ik \in \BbbR 
\mu 1,i1

\times \mu 2,i2
\times \cdot \cdot \cdot \times \mu k,ik , \mu s,is \leq \mu s,is ,

are, in fact, our joint-Tucker-like decompositions. This further leads to an orthogo-
nally transformed problem

(\Sigma 1, . . . ,\Sigma k | \scrZ )\approx \scrH , where \scrZ = (W\sansT 
1,\oplus , . . . ,W

\prime \sansT 
k,\oplus | \scrY ), \scrH = (W\sansT 

1,\oplus , . . . ,W
\sansT 
k,\oplus | \scrF ).

Since the matrices Ws,is are originated in the SVDs of block-rows, the first \mu s,is rows

in the isth block-row \scrH \{ s\} are linearly independent; compare with [18, section 3.1.2].
The final step is the permutation, that collects all the blocks \scrH i1,i2,\cdot \cdot \cdot ,ik together

in the leading principal corner of the tensor, while forming there \scrB 1. Application of
this permutation to matrices \Sigma s separates As,11 and As,22; compare with [18, section
3.1.3]. This separation can be done clearly such that all the zero columns of \Sigma s stay
as the last columns, and thus As,11 have linearly independent columns, i.e., (CP1) is
satisfied. Moreover, the orthonormal bases of left singular vector subspaces of As,11

are formed by a Euclidean vector and thus (CP2)--(CP3) is satisfied by construction.
It remains to show the minimality. Consider another orthogonal transformation

yielding the block-diagonal structure (2.9) with subproblems of dimensions

\widehat As,11 \in \BbbR \widehat ms\times \widehat ns , \widehat As,22 \in \BbbR (ms - \widehat ms)\times (ns - \widehat ns), \widehat \scrB 1 \in \BbbR \widehat m1\times \widehat m2\times \cdot \cdot \cdot \times \widehat mk .

Clearly, the transformed right-hand side always has zero projections into all left sin-
gular vector subspaces corresponding to the blocks \widehat As,22. Recall that we did the
splitting in the first part of the proof by employing the SVDs of block-rows of the
s-mode matricization of \scrF . Thus we minimize the number of nonzero rows in the
corresponding matricization of \scrH (because the number of nonzero rows is equal to the
rank of the block-row) and maximize the number of zero rows. Thus singular values
of \widehat As,22 form a subset of singular values of As,22. Consequently,

rank( \widehat As,11)\geq rank(As,11) = ns.

Therefore \widehat As,11 cannot have fewer columns (and smaller rank) than ns. Moreover,

if \widehat As,11 contains some extra singular value in comparison to As,11, \widehat As,11 has larger
dimensions then As,11 and the right-hand side has zero projection in the respective
singular vector subspace, thus (CP2)--(CP3) is violated. If the multiplicity of some
singular value in \widehat As,11 is larger then in As,11, then again \widehat As,11 has larger dimension
then As,11 and the subproblem can be further transformed so that the right-hand
side projection into the corresponding singular vector subspace contains zero s-mode
cofibers (rows in the s-mode matricization). Thus again (CP2)--(CP3) is violated.

Since the core problem is defined up to an orthogonal transformation, employing
the SVD of As,11 = Us[

\Sigma s

0 ]V \sansT 
s , where \Sigma s is square invertible (guaranteed by (CP1)),

we can do the following transformation:

U\sansT 
s [\scrB 

\{ s\} 
1 ,As,11] diag(I,Vs) =U\sansT 

s [\scrB 
\{ s\} 
1 ,As,11Vs] =

\Biggl[ 
\Phi \Sigma s

U\sansT 
s,\xi s+1

\scrB \{ s\} 1 0

\Biggr] 
\} ns

\} ms  - ns.

This yields a block upper antitriangular matrix with full row rank blocks on the
antidiagonal (\Phi is an unimportant nonzero submatrix). The full row rank of the
nonzero block of the last ms  - ns = dim(N (As,11)) = \mu s,\xi s+1 \geq 0 rows is guaranteed
by (CP2)--(CP3). Thus we obtain that:
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CP WITHIN MULTILINEAR APPROXIMATION PROBLEMS 63

(CP4) Matrices [\scrB \{ s\} 1 ,As,11] \in \BbbR ms\times (ns+\Delta /ms) are of full row rank equal to ms,
s= 1,2, . . . , k.

Compare this with analogous properties of problems (i)--(iv); cf. (CP4) in AppendixA.

3. Iterative core reduction for problems (i)--(ii). The CRTs (2.5)--(2.8)
and (2.9) can be constructed using the SVD and the Tucker decomposition, the high-
order variant of the SVD; see [28], [15], [16]. The resulting core problems have nice
structure (e.g., system matrices A11 are typically diagonal). However, calculation of
the SVD and Tucker decompositions is computationally expensive. Core problems
can also be obtained iteratively. We summarize the technique for problems (i)--(ii)
and explain the influence of starting vectors.

3.1. Golub--Kahan bidiagonalization and its band generalization. The
core problem in the vector right-hand side case Ax \approx b is reachable by the Golub--
Kahan (GK) iterative bidiagonalization of A starting with the vector b/\| b\| ; see [28].
For this three-term recurrence algorithm, the computation terminates when one of the
two normalization coefficients computed in each iteration is zero. The system matrix
A11 then has a bidiagonal form, e.g.,

where ``\clubsuit "" denotes nonzero entries (the other entries are zeros); boxed zero denotes
the zero normalization coefficient.

In the matrix right-hand side case, the core problem is extracted by the band
generalization of GK (BGGK) [7] of A. The iterations need to be started with an
orthonormal basis of the range of B; see [1] and, in particular, [16] for a detailed
explanation and description of the algorithm. BGGK produces a band diagonal matrix
A11 with d= rank(B1) = rank(B) diagonals. During the process the current width of
the band is subsequently reduced as individual underlying Krylov subspaces become
A-invariant. This effect is called the (upper or lower) deflation. After d deflations, the
core problem is separated. The process can also be viewed as a block generalization
of GK , where the nonzero entries in the standard GK are replaced by lower trianglar
matrices in the column echelon form (in the block-superdiagonal) and upper triangular
matrices in the row echelon form (in the block subdiagonal). See an example with
d= 4:
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where ``\heartsuit "" denotes entries that may be zero as well as nonzero; boxed zeros denote
the individual deflations. The vertical and horizontal lines separate the individual
blocks computed in the iterates of the block algorithm.

3.2. Impact of choice of starting vectors. In the case (i), GK iteratively
(column-by-column) builds up the matrices P and Q from (2.5). The first column
of P is the starting vector p1 = b/\gamma 1, where \gamma 1 = \| b\| . The first column of Q is
q1 =A\sansT p1/\alpha 1, where \alpha 1 = \| A\sansT p1\| . Then the process continues as

pj\gamma j\leftarrow Aqj - 1  - pj - 1\alpha j - 1, \| pj\| = 1, \gamma j \geq 0,(3.1)

qj\alpha j\leftarrow A\sansT pj  - qj - 1, \| qj\| = 1, \alpha j \geq 0,(3.2)

for j = 2,3, . . . till separating the core problem. The remaining columns of P and Q
can be chosen arbitrarily such that P and Q are square orthogonal (for determination
of the core problem they are in fact not needed). Then

P\sansT [b,A] diag(1,Q) =

\left[     
\| b\| 
0
...
0

P\sansT AQ

\right]     =

\left[      
\gamma 1 \alpha 1

\gamma 2 \alpha 2

\gamma 3
. . .

. . .

\right]      ,

giving schematically the structure of core data (2.5):

[b,A]
GK -  - \rightarrow [b1,A11] =

\left[      
\clubsuit \clubsuit 
\clubsuit \clubsuit 
\clubsuit \clubsuit 
\clubsuit \clubsuit 
\clubsuit 

\right]      .

For problems (ii) with B of full column rank Bj\"orck [1] proposed to use the basis
of R(B) obtained by the thin QR decomposition of B as the starting set of vectors
for BGGK. This concept can be simply generalized to any B \in \BbbR m\times d, d = rank(B),
by employing two subsequent QR's. In particular, in [16] it is proposed to do first the
full LQ decomposition of B (the full QR decompostion of B\sansT ) to get the orthogonal
matrix M (see (2.6)). Thus

B =LM\sansT = [L\prime ,0]M\sansT , where M - 1 =M\sansT \in \BbbR d\times d and L\prime \in \BbbR m\times d,

is a full column rank matrix in the lower triangular column echelon form. Then the
approach of Bj\"orck can be applied to L\prime . The thin QR decomposition yields

L\prime = P1:d\Gamma , where P1:d \in \BbbR 
m\times d, P\sansT 

1:d
P1:d = Id, and \Gamma \in \BbbR d\times d,

is square invertible in the upper triangular form. The d columns of P1:d then form
the orthonormal basis of R(B) used for starting BGGK. Altogether we have

B = P1:d [\Gamma ,0]M
\sansT and P\sansT [B,A] diag(M,Q) =

\biggl[ 
\Gamma 0
0 0

P\sansT AQ

\biggr] 
,
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CP WITHIN MULTILINEAR APPROXIMATION PROBLEMS 65

giving schematically the structure of core data (2.6), e.g.:

Note that the first full LQ decomposition is in [15], [16], [17] called the right-hand
side preprocessing since it precedes the main iterative part of BGGK, while yielding
the nice band-diagonal shape of the resulting problem [B1,A11]. However, since the
matrix multiplication is associative, it does not need to be done as the first step.

On the other hand, the actions of the involved algorithms are not commutative.
Starting with the thin QR decomposition of B, B = \widetilde P1:d

\widetilde U , we get in general another

basis of R(B) and a full row rank upper triangular \widetilde U in row echelon form. The

subsequent LQ decomposition of \widetilde U gives \widetilde U = [\widetilde \Gamma ,0]\widetilde M\sansT and can be done ex-post as

postprocessing. The main difference of the ``tilded"" decomposition B = \widetilde P1:d [
\widetilde \Gamma ,0]\widetilde M\sansT 

is that \Gamma is an upper but \widetilde \Gamma is a lower triangular invertible matrix (decompositions of B
in these two forms are also traditionally called the URVT and ULVT decompositions;
see [3], [11], [31]). Then, for example:

In general, any basis \widehat P1:d of R(B) can be used for starting BGGK, and any decom-

position of the form B = \widehat P1:d [
\widehat \Gamma ,0]\widehat M\sansT , where \widehat \Gamma is square invertible, can used for the

same purpose. A subsequent QR or LQ decomposition of \widehat \Gamma again yields a decompo-
sition of B in the URVT or ULVT form, respectively. Naturally, also the SVD of B
can be used, but this would result in higher computational cost.

Note that a different set of starting vectors (different orthonormal basis of R(B))
can drive BGGK for the given fixed [B,A] into differently shaped [B1,A11], since
deflations may occur in different iterations. However, from the conditions (CP1)--

(CP3) it follows that the final dimensions of the core data A11 \in \BbbR m\times n and B1 \in \BbbR m\times d

are independent of the choice of the starting set. Consequently, the same holds for
the total number of upper and lower deflations

\# upper def's =m - n and \# lower def's = (n+ d) - m;

see [16] for details.
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4. Iterative core reduction for problems (iii)--(v). In this section we gen-
eralize BGGK to problems (iii)--(v). First note that for (iii) and (v), we have to
preprocess a tensor right-hand side. For this purpose, we employ the standard Tucker
decomposition; see [33], [34], [35]; see also [21].

Let \scrB \in \BbbR m1\times m2\times \cdot \cdot \cdot \times mk be a tensor of multilinear rank

(4.1) rank(\scrB ) = (r1, r2, . . . , rk), i.e., rj \equiv rankj(\scrB )\equiv rank(\scrB \{ j\} )

for j = 1,2, . . . , k. Denote \Delta =
\prod k

\ell =1m\ell and consider the SVD of the jth matricization
in the following form:

(4.2) \scrB \{ j\} =Uj\Sigma jV
\sansT 
j \in \BbbR mj\times (\Delta /mj), Uj = [U \prime 

j ,U
\prime \prime 
j ]\in \BbbR mj\times mj , U \prime 

j \in \BbbR mj\times rj .

Then

(4.3) \scrB TC \equiv (U \prime 
1
\sansT ,U \prime 

2
\sansT , . . . ,U \prime 

k
\sansT | \scrB )\in \BbbR r1\times r2\times \cdot \cdot \cdot \times rk

is the so-called Tucker core of the tensor \scrB (the terminology is not related to the core
problem terminology in this paper) and

(4.4) \scrB = (U \prime 
1,U

\prime 
2, . . . ,U

\prime 
k | \scrB TC) =

\Bigl( 
U1,U2, . . . ,Uk | diagk(\scrB TC,0)

\Bigr) 
are the economic and full Tucker decompositions of \scrB , respectively. Alternatively
other variants of the Tucker decomposition then the SVD based can be used. We
mention this in the last subsection.

4.1. BGGK for tensor right-hand side problems. We are looking for an
iterative BGGK-based process such that

A\times 1 \scrX \approx \scrB reduces to A11 \times 1 \scrX 11...1 \approx \scrB 1.

The matricization of A \times 1 \scrX \approx \scrB transforms the problem into a matrix right-hand
side one

A\scrX \{ 1\} \approx \scrB \{ 1\} .

The CRT thus becomes the transformation for the problem (ii), however, with an
additional constraint. In particular,

(P\sansT AQ)(Q\sansT \scrX \{ 1\} M)\approx (P\sansT \scrB \{ 1\} M) with M \equiv Mk \otimes \cdot \cdot \cdot \otimes M2,

i.e., M is a Kronecker product with orthogonal factors; see [17, eq. (6.4)].
To find it, we start with the Tucker decomposition (4.1)--(4.4) of \scrB \in \BbbR m\times d2\times \cdot \cdot \cdot \times dk .

We need to link the individual objects in the decomposition to the orthogonal trans-
formation (2.7). First,

P1:r1 \equiv U \prime 
1 \in \BbbR m\times r1 , r1 = rank(\scrB \{ 1\} )

play the role of the starting vectors of BGGK and form the first part of the orthogonal
transformation matrix P . Then,

Mj \equiv Uj = [U \prime 
j ,U

\prime \prime 
j ]\in \BbbR dj\times dj , U \prime 

j \in \BbbR dj\times dj , dj \equiv rj = rank(\scrB \{ j\} ), j = 2, . . . , k,
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are the other right-hand side transformation matrices, where dj denote the latter
dimensions of \scrB 1, j = 2, . . . , k; see core problem properties in section 2.3 or Appendix
A. The Tucker core \scrB TC \in \BbbR r1\times d2\times \cdot \cdot \cdot \times dk of \scrB forms the main (nonzero) part of \scrB 1.

Having orthonormal starting vectors P1:r1 \equiv U \prime 
1, we can now run BGGK as in

the previous section to get (2.7). Schematically, e.g., for k= 3 and r1 = 4

(4.5)

Here the upper 4\times 3\times 2 part of the tensor \scrB 1 (filled with hearts) is the (full multilinear
rank) Tucker core \scrB TC of the original \scrB , concatenated in the first mode by a zero block

of appropriate size; 0 \in \BbbR (m - r1)\times d2\times \cdot \cdot \cdot \times dk in general. After a vectorization the core
problem takes the form

(4.6) [\scrB \{ 1\} 1 ,A11] =

\left[          

\heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \clubsuit 
\heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \clubsuit 
\heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \heartsuit 
\heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \heartsuit \clubsuit 

\clubsuit \heartsuit \heartsuit \clubsuit 
\clubsuit \heartsuit \heartsuit 
\clubsuit \heartsuit 

\right]          
,

where the first vertical line separates the individual frontal slices of \scrB 1. Note that
applying BGGK directly to [\scrB \{ 1\} ,A] would yield the full column rank right-hand side

B1, representing a factor of \scrB \{ 1\} 1 =B1
\widehat M\sansT for some \widehat M \in \BbbR (

\prod k
\ell =2 d\ell )\times r1 , \widehat M\sansT \widehat M = Ir1 .

4.2. BGGK for bilinear problems with a matrix right-hand side. In case
(iv) the whole setup is different. The linear mapping is represented by two matrices
and we are looking for a process such that

ALXA\sansT 
R \approx B reduces to AL,11X11A

\sansT 
R,11 \approx B1.

We now show that this can be achieved via appropriate preprocessing of B followed by
two independent BGGK processes for AL and AR, respectively. Even though the der-
ivations are based on Householder reflection matrices, computation of BGGK iterates
can be realized by band (block) tridiagonalization using the well-known equivalence
of these approaches; see section 3.1.

We start with the SVD of the right-hand side. Let rank(B) = r and B =U\Sigma V \sansT \in 
\BbbR m\times d with the partitioning

(4.7) U = [U \prime ,U \prime \prime ]\in \BbbR m\times m, U \prime \in \BbbR m\times r, V = [V \prime , V \prime \prime ]\in \BbbR d\times d, V \prime \in \BbbR d\times r,

and \Sigma = diag(\Sigma \prime ,0), where \Sigma \prime \in \BbbR r\times r is square, diagonal, and invertible. Consider
the extended data matrix

(4.8)

\biggl[ 
B AL

A\sansT 
R 0

\biggr] 
\in \BbbR (c+m)\times (n+d)
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and apply the following transformation
(4.9)

diag(U, Ic)
\sansT 

\biggl[ 
B AL

A\sansT 
R 0

\biggr] 
diag(V, In) =

\left[   \Sigma \prime 0 U \prime \sansT AL

0 0 U \prime \prime \sansT AL

(V \prime \sansT AR)
\sansT (V \prime \prime \sansT AR)

\sansT 0

\right]   .
This block structure is particularly advantageous, since it now allows us to treat the
two parts involving AL and AR independently.

To transform the part of (4.9) corresponding to AL, we first find a Householder
matrix HL,1 such that the first row of

(U \prime \sansT AL)HL,1 and thus also (U\sansT AL)HL,1

is zero except for the first entry. Then we apply a Householder matrix HL,2 so that
the same holds for the first column of

H\sansT 
L,2(U

\prime \prime \sansT ALHL,1).

Similarly, to transform the part of (4.9) corresponding to AR we first apply a House-
holder matrix HR,1 that zeros out the entries in the first row of

(V \prime \sansT AR)HR,1 and thus also (V \sansT AR)HR,1

except for the first one. Then we apply a Householder matrix HR,2 so that we get the
same for the first column of

H\sansT 
R,2(V

\prime \prime \sansT ARHR,1).

The whole orthogonal transformation is then

\left[  Ir 0 0
0 HL,2 0
0 0 HR,1

\right]  \sansT 
\left[   \Sigma \prime 0 U \prime \sansT AL

0 0 U \prime \prime \sansT AL

(V \prime \sansT AR)
\sansT (V \prime \prime \sansT AR)

\sansT 0

\right]   
\left[  Ir 0 0

0 HR,2 0
0 0 HL,1

\right]  

=

\left[   \Sigma \prime 0 U \prime \sansT ALHL,1

0 0 H\sansT 
L,2U

\prime \prime \sansT ALHL,1

H\sansT 
R,1(V

\prime \sansT AR)
\sansT H\sansT 

R,1(V
\prime \prime \sansT AR)

\sansT HR,2 0

\right]   .
After several steps, the transformation matrices applied from the left and right have
the forms

diag(Ir, HL,2HL,4HL,6 \cdot \cdot \cdot , HR,1HR,3HR,5 \cdot \cdot \cdot ),
diag(Ir, HR,2HR,4HR,6 \cdot \cdot \cdot , HL,1HL,3HL,5 \cdot \cdot \cdot ),

(4.10)

respectively.
In summary, BGGK of the extended data matrix (4.8) splits equivalently into two

independent BGGK processes. Schematically:
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CP WITHIN MULTILINEAR APPROXIMATION PROBLEMS 69

\biggl[ 
B AL

A\sansT 
R 0

\biggr] 
BGGK -  -  -  - \rightarrow 

\biggl[ 
B1 AL,11

A\sansT 
R,11 0

\biggr] 
is equivalent to

[B,AL]
BGGK -  -  -  - \rightarrow [BL,1,AL,11], where B1 = [BL,1,0] and

[B\sansT ,AR]
BGGK -  -  -  - \rightarrow [BR,1,AR,11], where B1 =

\biggl[ 
B\sansT 

R,1

0

\biggr] 
.

(4.11)

Note that B1 computed for (4.8) has some extra zero rows and columns in compar-
ison to the right-hand sides produced in separate processes (4.11); see the following
example with r= rank(B) = 4:

(4.12)

\biggl[ 
B1 AL,11

A\sansT 
R,11 0

\biggr] 
=

\left[                

\clubsuit \clubsuit 
\clubsuit \heartsuit \clubsuit 
\clubsuit \heartsuit \heartsuit 
\clubsuit \heartsuit \heartsuit \clubsuit 

\clubsuit \heartsuit \heartsuit \clubsuit 
\clubsuit \heartsuit \heartsuit 
\clubsuit \heartsuit 

\clubsuit \heartsuit \heartsuit \heartsuit \clubsuit 
\clubsuit \heartsuit \heartsuit \clubsuit 

\clubsuit \heartsuit \clubsuit 

\right]                
.

Further note that since we started with the SVD of B, the nonzero full rank block
of B1 is square diagonal and equal to \Sigma \prime . Different initial decompositions of B may
result in different full rank blocks, but with the same singular values (see section 3.2).

It remains to specify the orthogonal transformation matrices in (2.8). Comparing\biggl[ 
P\sansT BK P\sansT ALQ
M\sansT A\sansT 

RK 0

\biggr] 
=

\biggl[ 
P 0
0 M

\biggr] \sansT \biggl[ 
B AL

A\sansT 
R 0

\biggr] \biggl[ 
K 0
0 Q

\biggr] 
and (4.9) combined with (4.10) gives

\biggl[ 
P 0
0 M

\biggr] 
=

\biggl[ 
U \prime U \prime \prime 0
0 0 Id

\biggr] \left[  Ir 0 0
0 HL,2HL,4HL,6 \cdot \cdot \cdot 0
0 0 HR,1HR,3HR,5 \cdot \cdot \cdot 

\right]  ,
\biggl[ 

K 0
0 Q

\biggr] 
=

\biggl[ 
V \prime V \prime \prime 0
0 0 In

\biggr] \left[  Ir 0 0
0 HR,2HR,4HR,6 \cdot \cdot \cdot 0
0 0 HL,1HL,3HL,5 \cdot \cdot \cdot 

\right]  .
Consequently, the starting vectors for the two independent BGGKs in (4.11) are

P1:r =U \prime and K1:r = V \prime ,

respectively.

4.3. BGGK for \bfitk -linear problems with a tensor right-hand side. In the
general k-linear case, we wish to design a process such that

(A1,A2, . . . ,Ak | \scrX )\approx \scrB reduces to (A1,11,A2,11, . . . ,Ak,11 | \scrX 11...1)\approx \scrB 1.
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This can be done by a straightforward combination of approaches from sections 4.1
and 4.2. We start with the Tucker decomposition of the tensor \scrB \in \BbbR m1\times m2\times \cdot \cdot \cdot \times mk ,
as in section 4.1. Let

rank(\scrB ) = (r1, r2, . . . , rk) and \scrB = (U \prime 
1,U

\prime 
2, . . . ,U

\prime 
k | \scrB TC)

(see (4.1)--(4.4)), i.e., the columns of U \prime 
s \in \BbbR ms\times rs represent an orthonormal ba-

sis of R(\scrB \{ s\} ) for s = 1,2, . . . , k. Following a similar argument as that in section
4.2, the whole k-linear BGGK splits into k standard BGGKs started with different
matricizations of \scrB . Schematically,

(\scrB ,A1,A2, . . . ,Ak)
BGGK -  -  -  - \rightarrow (\scrB 1,A1,11,A2,11, . . . ,Ak,11),

where \scrB 1 \in \BbbR m1\times m2\times \cdot \cdot \cdot \times mk splits to

[\scrB \{ 1\} ,A1]
BGGK -  -  -  - \rightarrow [B1,1,A1,11], where \scrB \{ 1\} 1 =B1,1

\widehat M\sansT 
1 ,

[\scrB \{ 2\} ,A2]
BGGK -  -  -  - \rightarrow [B2,1,A2,11], where \scrB \{ 2\} 1 =B2,1

\widehat M\sansT 
2 ,

...

[\scrB \{ k\} ,Ak]
BGGK -  -  -  - \rightarrow [Bk,1,Ak,11], where \scrB \{ k\} 1 =Bk,1

\widehat M\sansT 
k ,

(4.13)

for some \widehat Ms \in \BbbR (\Delta /ms)\times rs , \Delta =
\prod k

\ell =1m\ell , \widehat M\sansT 
s
\widehat Ms = Irs , for s= 1,2, . . . , k.

More precisely, the individual BGGK processes start with orthonormal bases of
ranges of the particular matricizations of \scrB . Thus

P1,1:r1 \equiv U \prime 
1, P2,1:r2 \equiv U \prime 

2, . . . , Pk,1:rk \equiv U \prime 
k,

where Ps, s = 1,2, . . . , k, play roles of the orthogonal matrices from the CRT (2.9).
Splitting the full k-linear process to the k standard BGGKs (4.13) results in right-
hand sides matrices Bs,1 having full column rank, i.e., we naturally removed all the
nonzero but linearly dependent fibers that may be present in the Tucker core (see the
last paragraph of section 4.1), and zero fibers that may be present in the tensor \scrB 1
(similarly as zero columns and rows may appear in (4.11)).

To clarify the exposition, consider the example for k = 3, with the core problem
right-hand side \scrB 1 \in \BbbR 7\times 5\times 4 and with the Tucker core \scrB TC \equiv \scrB 1,TC \in \BbbR 4\times 3\times 2 (filled
with hearts):
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CP WITHIN MULTILINEAR APPROXIMATION PROBLEMS 71

Here
(4.14)

are clearly not of full column ranks 4, 3, and 2, respectively. Recall \widehat Ms matrices
in (4.13), see also (4.6). The vertical lines in matricizations separate the individual
frontal, transposed frontal, and transposed lateral slices of \scrB 1, respectively.

4.4. Note on QR-based variant of Tucker decomposition. For matrix
right-hand side problems (ii), the decompositions of the URVT or ULVT forms (i.e.,
consecutive LQ and QR, or QR and LQ decompositions) can be used to preprocess
B under a lower computational cost than with the use of SVD; see section 3.2. From
the tensor point of view, we in fact obtain a QR decomposition in the first and second
mode, respectively. Similarly, preprocessing of \scrB can be improved.

Consider for simplicity a tensor of a small order, e.g., \scrB = (bi1,i2,i3) \in \BbbR 8\times 5\times 4,
k = 3. Recall how the matricization works on this example, i.e., how the individual
entries are rearranged:

\scrB \{ 1\} =

\left[   b111 \cdot \cdot \cdot b151 b112 \cdot \cdot \cdot b152 b113 \cdot \cdot \cdot b153 b114 \cdot \cdot \cdot b154
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
b811 \cdot \cdot \cdot b851 b812 \cdot \cdot \cdot b852 b813 \cdot \cdot \cdot b853 b814 \cdot \cdot \cdot b854

\right]   \in \BbbR 8\times (5 \cdot 4),

the individual blocks are (1,2)-slices called for k= 3 frontal slices;

\scrB \{ 2\} =

\left[   b111 \cdot \cdot \cdot b811 b112 \cdot \cdot \cdot b812 b113 \cdot \cdot \cdot b813 b114 \cdot \cdot \cdot b814
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
b151 \cdot \cdot \cdot b851 b152 \cdot \cdot \cdot b852 b153 \cdot \cdot \cdot b853 b154 \cdot \cdot \cdot b854

\right]   \in \BbbR 5\times (8 \cdot 4),

the individual blocks are (2,1)-slices, i.e., here transposed frontal slices, and

the individual blocks are (3,1)-slices, i.e., here transposed lateral slices.
Further note that if \scrB has zero cofibers in the \ell mode (i.e., zero rows after un-

folding into the \ell -mode matricization), then application of a matrix in \tau mode (\tau \not = \ell )

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

2/
23

 to
 8

5.
70

.2
10

.3
0 

by
 V

ác
la

v 
A

lt 
(a

lt.
va

cl
av

@
gm

ai
l.c

om
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

205



72 I. HN\v ETYNKOV\'A, M. PLE\v SINGER, J. \v Z\'AKOV\'A

does not affect these zero cofibers. We illustrate this by employing QR decompositions
on our example. First consider that, e.g.,

rank(\scrB ) =
\Bigl( 
rank(\scrB \{ 1\} ) , rank(\scrB \{ 2\} ) , rank(\scrB \{ 3\} )

\Bigr) 
= (4,3,2).

Let \scrB \{ 1\} =Q1R1, where Q - 1
1 =Q\sansT 

1 \in \BbbR 8\times 8, be the QR decomposition and, e.g.,

(4.15)

By rearrangingR1 back into the original shape we get a tensor\scrR 1 satisfying\scrR \{ 1\} 
1 =R1

and \scrB =Q1 \times 1\scrR 1. Next consider the QR decomposition of

i.e., \scrR \{ 2\} 
1 =Q2R2, where Q - 1

2 =Q\sansT 
2 \in \BbbR 5\times 5, and, e.g.,

(4.16)

and \scrR 2 satisfying \scrR \{ 2\} 
2 =R2 and \scrR 1 =Q2 \times 2\scrR 2, etc.

We see that for \scrB \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nk with the rank(\scrB ) = (r1, r2, . . . , rk) any sequence
of k QR decompositions in k distinct modes, e.g.,

\scrB QR in mode i1 -  -  -  -  -  -  -  -  - \rightarrow \scrR i1
QR in mode i2 -  -  -  -  -  -  -  -  - \rightarrow \scrR i2

QR in mode i3 -  -  -  -  -  -  -  -  - \rightarrow \cdot \cdot \cdot QR in mode ik -  -  -  -  -  -  -  -  - \rightarrow \scrR ik

actually produces a QR-like Tucker decomposition

\scrB =Qi1 \times i1 (Qi2 \times i2 (\cdot \cdot \cdot \times ik - 1
(Qik \times ik \scrR ik) \cdot \cdot \cdot )),

where \scrR k has a block diagonal structure

\scrR k = diagk(\scrR k,TC,0), and \scrR k,TC \in \BbbR r1\times r2\times \cdot \cdot \cdot \times rk

is of full multilinear rank.
Since the R factor of a QR decomposition is in upper triangular row echelon

forms, this structure is also visible on the core \scrR k,TC. However, it is clearly affected
only by the last QR decompostion, as illustrated in Figures 4.1 and 4.2.
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CP WITHIN MULTILINEAR APPROXIMATION PROBLEMS 73

1

2

mode 3

Fig. 4.1. Structure of a Tucker core (here k = 3 and r1 = r2 = rk) obtained by a sequence
of QR decompositions. The last QR decomposition is in the mode ik = 1 (left), 2 (middle), and 3
(right); one fiber in the respective mode is visualized. The upper triangular matrix Rik is considered
to be in the same form as in (4.15), (4.16), i.e., with an invertible upper triangular block of the size
rik .

1

2

mode 3

Fig. 4.2. Similar illustration as in Figure 4.1. The upper triangular matrices Rik are considered
to be in a more general row echelon form.

5. Properties of subproblems obtained by BGGK. It remains to show
that the subproblems extracted by the methods described in sections 4.1, 4.2, and 4.3
represent the core problems. We prove this by showing that they satisfy the necessary
and sufficient conditions (CP1)--(CP3); see sections 2.3 and 2.4, and, in particular,
Theorem 2.3.

Theorem 5.1. Consider the problems

A11 \times 1 \scrX 11...1 \approx \scrB 1,
AL,11X11A

\sansT 
R,11 \approx B1,

(A1,11,A2,11, . . . ,Ak,11 | \scrX 11...1)\approx \scrB 1

obtained by the BGGK-based methods described in sections 4.1, 4.2, and 4.3, respec-
tively. These problems satisfy the defining conditions (CP1)--(CP3). Thus they rep-
resent core problems within the given data.

Proof. Since the matrices of the reduced problems

A11, AL,11, AR,11, A1,11, A2,11, . . . , Ak,11,
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are in a lower triangular column echelon form with no zero columns, they are of full
column rank. Thus (CP1) is satisfied for all of them.

Now consider the tensor right-hand side problem (iii). Since we started the com-
putation with the Tucker decomposition of \scrB , \scrB 1 is the Tucker core \scrB TC of \scrB with
the first-mode fibers prolonged with zeros,

\scrB \{ 1\} 1 =

\biggl[ 
\scrB \{ 1\} TC

0

\biggr] 
,

and other dimensions unaffected. Thus \scrB \{ j\} 1 , j = 2, . . . , k are of full row rank and
consequently (CP2) holds.

To verify (CP3) for (iii) and (CP2)--(CP3) for (iv) and (v), we first point out that

A11A
\sansT 
11, AL,11A

\sansT 
L,11, AR,11A

\sansT 
R,11, A1,11A

\sansT 
1,11, A2,11A

\sansT 
2,11, . . . , Ak,11A

\sansT 
k,11,

are square, symmetric positive semidefinite matrices with a specific structure of non-
zero entries called wedge-shaped matrices; see [16, Lemma 4.6] for the definition and
details. Wedge-shaped matrices generalize the Jacobi tridiagonal matrices and have
various interesting properties [12]. In particular,

\bullet A11A
\sansT 
11 is r1-wedge-shaped, where r1 = rank1(\scrB );

\bullet AL,11A
\sansT 
L,11 is r-wedge-shaped, where r= rank(B);

\bullet AR,11A
\sansT 
R,11 is r-wedge-shaped, where r= rank(B); and

\bullet As,11A
\sansT 
s,11 is rs-wedge-shaped, where rs = ranks(\scrB ), s= 1,2, . . . , k.

A multiplicity \varrho (\lambda ) of a real (and here nonegative) eigenvalue \lambda of a \kappa -wedge-
shaped matrix \Theta \in \BbbR n\times n is bounded by \kappa , \varrho (\lambda )\leq \kappa ; see [16] and [12]. Let Z\lambda \in \BbbR n\times \varrho (\lambda )

be a matrix of \varrho (\lambda ) linearly independent eigenvectors of \Theta corresponding to \lambda . Then
the upper \kappa -by-\varrho (\lambda ) block of Z\lambda , i.e.,

[I\kappa ,0]
\sansT Z\lambda \in \BbbR \kappa \times \varrho (\lambda ),

is of full column rank; see [12, Corollary 5].
Now the eigenvalues of A11A

\sansT 
11 are squares of singular values of A11, and the

corresponding eigenvectors are left singular vectors of A11. The condition (CP3) for

(iii) requires that U\sansT 
i \scrB 

\{ 1\} 
1 are of full row rank for all i's. Since here Ui \equiv Z\lambda (originated

in A11A
\sansT 
11) and \scrB 

\{ 1\} 
1 = [W0 ] with full row rank W equal to r1, (CP3) holds.

Analogously, we can prove (CP2)--(CP3) for (iv). Using similar arguments to
the above, here UL,i \equiv Z\lambda (originated in AL,11A

\sansT 
L,11), UR,j \equiv Z\lambda (originated in

AR,11A
\sansT 
R,11), and B1 = [\Sigma 0

0
0 ] and \Sigma \in \BbbR r\times r are invertible. Consequently, U\sansT 

L,iB1

and U\sansT 
R,jB

\sansT 
1 are of full row rank for all i's and j's and (CP2)--(CP3) is satisfied.

Finally, in (v) we get Us,i \equiv Z\lambda (originated in AsA
\sansT 
s ). Furthermore, \scrB \{ s\} 1 = [W0 ]

with the matrix W having full row rank equal to rs, s = 1,2, . . . , k. Thus U\sansT 
s,is
\scrB \{ s\} 1

are of full row rank for all is's and s's and (CP2)--(CP3) holds.

The banded shape of the reduced problems determined by the described methods
allows to formulate further properties of core problems. Note that the following
theorem holds for core problems in general, i.e., it is not restricted to subproblems
obtained by BGGK.
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Theorem 5.2 (property (CP6)--(CP7)). Consider the core problems

A11 \times 1 \scrX 11...1 \approx \scrB 1,
AL,11X11A

\sansT 
R,11 \approx B1,

(A1,11,A2,11, . . . ,Ak,11 | \scrX 11...1)\approx \scrB 1

obtained by the orthogonal transformations (2.7), (2.8), and (2.9), respectively. Then
the multiplicities of singular values of the matrices

\bullet A11 are bounded by r1 = rank1(\scrB 1);
\bullet AL,11 and AR,11 are bounded by r= rank1(B1);
\bullet As,11 are bounded by rs = ranks(\scrB 1).

The multiplicities of singular values of the extended matrices
\bullet [\scrB \{ 1\} 1 ,A11] are bounded by r1 = rank1(\scrB 1);
\bullet [B1,AL,11] and [B\sansT 

1 ,AR,11] are bounded by r= rank1(B1);

\bullet [\scrB \{ s\} 1 ,As,11] are bounded by rs = ranks(\scrB 1).
Proof. The proof again employs properties of wedge-shaped matrices. The first

part follows directly from the fact that A11A
\sansT 
11 is an r1-wedge-shaped matrix (and

similarly for the other cases); see in particular [16, Lemma 4.6 and Corollary 4.3] or
[12, Corollary 5].

The second assertion is a bit more complicated. Consider first the extended
matrix [\scrB \{ 1\} 1 ,A11], where rank(\scrB \{ 1\} 1 ) = r (the other cases are analogous). The LQ

decomposition of \scrB \{ 1\} 1 gives \scrB \{ 1\} 1 = [L,0]Q\sansT , where L is lower triangular in the column
echelon form with the full column rank r, and Q\sansT =Q - 1. Then [L,A11] can be seen
as an extended matrix of a core problem within some matrix right-hand side problem
(ii). Thus it satisfies the properties (CP6)--(CP7) given in [16, Lemma 4.6] and [13,
Theorem 2.2]; see also Appendix A. Since

[\scrB \{ 1\} 1 ,A11] =
\bigl[ 
[L,0] A11

\bigr] 
diag(Q\sansT , I),

the assertion holds for all nonzero singular values. Finally, since the extended matrix
is of full row rank (see the property (CP4)) it has no zero singular value.

6. Conclusion. In this paper we have introduced core problems within general
multilinear approximation problems with a tensor right-hand side, and specified their
defining properties. We described iterative methods providing core reduction of data
for particular multilinear problems including the general one. This reduction can
always be obtained by combining a specific preprocessing of the right-hand side data,
followed by a series of independent block (or band) GK bidiagonalization processes
applied on selected parts of the model and observation set. Properties of the reduced
data ensure their minimality and uniqueness up to an orthogonal transformation.
These results demonstrate that it is in principle possible to reduce maximally the
given data by a procedure based on Krylov subspace projections. Computational
aspects of the presented algorithms are behind the scope of this analytical paper and
remain for future research.

Appendix A. The list of core problems properties. In addition we list all
the already known core problem properties for the problems (i)--(iv); for the details
see [28], [15], [16], [17], and [18], respectively. We use the notation introduced in
section 2.3. The properties that together form the necessary and sufficient condition
for the minimality are asterisked.
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(i) The vector right-hand side core problem A11x1 \approx b1; see [28]:

*(CP1) The matrix A11 \in \BbbR m\times n is of full column rank equal to n.
(CP2) The vector b1 \in \BbbR m is nonzero.
*(CP3) The scalars u\sansT 

i b1 \in \BbbR are nonzero (where ui are the left singular vectors
of A11) for i= 1, . . . ,m..

(CP4) The matrix [b1,A11]\in \BbbR m\times (n+1) is of full row rank equal to m.
(CP5) The scalars e\sansT 1 v\ell \in \BbbR are nonzero (where e1 is the first Euclidean vector

and v\ell are the right singular vectors of [b1,A11]) for \ell = 1, . . . , n,n+ 1.
(CP6) Singular values of the matrix A11 are simple.
(CP7) Singular values of the matrix [b1,A11] are simple.
(CP8) It always has a unique TLS solution.

(ii) The matrix right-hand side core problem A11X11 \approx B1; see [15], [16]:

*(CP1) The matrix A11 \in \BbbR m\times n is of full column rank equal to n.

*(CP2) The matrix B1 \in \BbbR m\times d is of full column rank equal to d.

*(CP3) Matrices U\sansT 
i B1 \in \BbbR \mu i\times d are of full row rank \mu i, for i= 1, . . . , \xi , \xi + 1.

(CP4) The matrix [B1,A11]\in \BbbR m\times (n+d) is of full row rank equal to m.
(CP5) The leading pricipal d\times \kappa \ell blocks of V\ell are of full column rank \kappa \ell (where

columns of V\ell span either the right singular vector subspace
corresponding to the \ell th strictly largest nonzero singular value of [B1,A11],
or N ([B1,A11])).

(CP6) Multiplicities of singular values of A11 are bounded by d.
(CP7) Multiplicities of singular values of [B1,A11] are bouded nby d.
(CP8) If it has a TLS solution, then it is unique.

(iii) The tensor right-hand side core problem A11 \times 1 \scrX 11...1 \approx \scrB 1; see [17]:

*(CP1) The matrix A11 \in \BbbR m\times n is of full column rank equal to n.

*(CP2) The tensor \scrB 1 \in \BbbR m\times d2\times \cdot \cdot \cdot \times dk (where \Delta \equiv m \cdot 
\prod k

\ell =2 d\ell ) has the s-mode

matricization \scrB \{ s\} 1 \in \BbbR ds\times (\Delta /ds) of full row rank equal to ds (or,
equivalently, all s-mode cofibers of \scrB 1 are linearly independent) for
s= 2, . . . , k.

*(CP3) Matrices U\sansT 
i \scrB 

\{ 1\} 
1 \in \BbbR \mu i\times (\Delta /m) are of full row rank \mu i for i = 1, . . . , \xi , \xi 

+ 1.
(CP4) The matrix [\scrB \{ 1\} 1 ,A11]\in \BbbR m\times (n+\Delta /m) is of full row rank equal to m.

(iv) The bilinear core problem AL,11X11AR,11 \approx B1; see [18]:

*(CP1) The matrix AL,11 \in \BbbR m\times n is of full column rank equal to n.

The matrix AR,11 \in \BbbR d\times c is of full column rank equal to c.
*(CP2) Matrices B1UR,j \in \BbbR m\times \gamma j are of full column rank \gamma j , j = 1,2, . . . , \zeta , \zeta +1.

*(CP3) Matrices U\sansT 
L,iB1 \in \BbbR \mu i\times d are of full row rank \mu i, i= 1,2, . . . , \xi , \xi + 1.

(CP4) The matrix [B1,AL,11]\in \BbbR m\times (n+d) is of full row rank equal to m.

The matrix [B\sansT 
1 ,AR,11]\in \BbbR d\times (c+m) is of full row rank equal d.
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Conclusions

In this thesis we have studied linear approximation problems of different
forms, the core problems within them, and partially also their solvability in
the TLS sense. The main motivation for us is that the core problem with
matrix right-hand side may not have a TLS solution.

In Part II we have built up very general and robust algebraic framework
enabling to handle and study internal structure of core problems with ma-
trix right-hand sides. That led us to some rather simple or partial, but any-
way interesting results — for example the interpretation of the core prob-
lem reduction as the orthogonal projection from the set of all linear approx-
imation problems onto the set of core problems, or the commutation of the
core problem reduction with the problem composition (see Section 5.2.3).
It also allowed us to formulate and partially also answer the question on ir-
reducible representation of linear approximation problem (in terms of com-
position) (see Section 5.3.6). As a by-product we have described in details
how to extract the degenerated component (that can be seen as the part
of the problem that only increases residuum) from the core problem (see
Section 5.3.3). Our journey into the internal structure of core problems is
complemented by already published work [10] (see page 83) that analyzes
the evolution of TLS solvability of core problems while composing.

There are, however, two main open questions related to the results pre-
sented in Part II. First, it is still not clear how the irreducible representation
of the proper core problem looks like (our partial answer to the irreducible
representation is related to its easier part); it is also not clear how the gen-
eral irreducible core problem (possibly with given number of right-hand sides
d ≥ 2) looks like. The second open question relates to our work [10], where
we analyze only a few selected combinations; further combinations or more
sophisticated analysis is missing.

In Part III we did in particular the analysis of the existence and uniqueness
of the core problem within three different (but related) linear approximation
problems: problems with tensor right-hand side, bilinear problems with ma-
trix right-hand side, and multilinear problems with tensor right-hand side. All
of them can be seen as generalizations of the matrix right-hand side prob-
lem (and generalizations or specializations of themselves). All three core
problem reductions are also already published in [8] (see page 141), [9] (see
page 167), and [11] (see page 187), respectively. The core problem reveal-
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ing orthogonal transformation is in all three cases essentially done via the
SVD of the mapping (which is either a single matrix, or Kronecker product of
matrices). In the last paper we also propose the Krylov subspace approach
based on the band generalization of the Golub–Kahan iterative bidiagonal-
ization (which in fact can be due to the specialization directly applied on all
three cases); this is, however, not in the main interest of this thesis.

Note that there are interesting and important open questions related to
Part III, too. In particular, the TLS solvability theory for bilinear andmultilinear
problem is not fully resolved yet, up to our knowledge (see Remarks 6 and 8).
Both approaches can be also combined and one could ask about irreducible
representations of these generalizations (note that our algebraic framework
is already fully prepared for the bilinear problems). These open questions
will be addressed in the future work.
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