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Haar transform

Haar transform is the simplest type of the discrete wavelet
transform (DWT). Haar wavelets were studied by A. Haar in 1910.

We focus on the wavelet analysis of

I vectors (discrete signals)

I matrices (images)

I real one-variable functions

First, we consider a vector v representing a discrete signal.
Objective of DWT is to find a multiscale representation of v to
analyze signal at different scales. Such a representation can be
useful for sparse representation of a signal, compression, noise
removal, detection of singularities, finding trend and periodicity,
changes in variability, and so on.

Similarly, in the case of the fast Fourier transform (FFT) the signal
is characterized by frequencies. An advantage of DWT is that it is
local, while FFT is global.



Haar transform

filters: h = (h1, h2) =
(

1√
2
, 1√

2

)
is a scaling filter (low-pass filter)

g = (g1, g2) =
(

1√
2
,− 1√

2

)
is a wavelet filter (high-pass)

input vector: v = (v1, . . . vn), n even

output vector: c =
(
c1, . . . cn/2

)
, d =

(
d1, . . . dn/2

)
first step of dwt: v→ (c,d)

ck =
∑2

i=1 hiv2k−2+i , dk =
∑2

i=1 giv2k−2+i , k = 1, . . . , n/2

c1 =h1v1 + h2v2 = v1+v2√
2

d1 = g1v1 + g2v2 = v1−v2√
2

c2 =h1v3 + h2v4 = v3+v4√
2

d2 = g1v3 + g2v4 = v3−v4√
2

c3 =h1v5 + h2v6 = v5+v6√
2

d3 = g1v5 + g2v6 = v5−v6√
2

...
...

cn/2 =h1vn−1 + h2vn = vn−1+vn√
2

dn/2 = g1vn−1 + g2vn = vn−1−vn√
2



Example 1. vi = |cos (2πxi )|, xi = i−1
199 , i = 1, . . . , 200

Input vector v Output vector (c,d)



Haar transform: v→
[
cM ,dM , . . . ,d2,d1

]
h h h h

v −→ c1 −→ c2 −→ . . . cM−1 −→ cM .

↘g ↘g ↘g ↘g

d1 d2 d3 . . . dM



Example 2.
We consider a vector v = (9, 9, 8, 6, 7, 5, 6, 6) and we apply Haar
transform on it.
First step:(
c1,d1

)
=

(
9 + 9√

2
,

8 + 6√
2
,

7 + 5√
2
,

6 + 6√
2
,

9− 9√
2
,

8− 6√
2
,

7− 5√
2
,

6− 6√
2

)
=

(
9
√

2, 7
√

2, 6
√

2, 6
√

2, 0,
√

2,
√

2, 0
)

Second step:(
c2,d2,d1

)
=

(
9
√

2+7
√

2√
2

,
6
√

2+6
√

2√
2

,
9
√

2−7
√

2√
2

,
6
√

2−6
√

2√
2

, 0,
√

2,
√

2, 0

)
=

(
16, 12, 2, 0, 0,

√
2,
√

2, 0
)

Third step:(
c3,d3,d2,d1

)
=

(
16 + 12√

2
,

16− 12√
2

, 2, 0, 0,
√

2,
√

2, 0

)
=

(
14
√

2, 2
√

2, 2, 0, 0,
√

2,
√

2, 0
)



Example 1. Input vector v Transformed vector, M = 1

Transformed vector, M = 2 Transformed vector, M = 3



Inverse Haar transform
one step of inverse Haar transform: (c,d)→ v

v1 = h1c1 + g1d1 = c1+d1√
2

v2 = h2c1 + g2d1 = c1−d1√
2

v3 = h1c2 + g1d2 = c2+d2√
2

v4 = h2c2 + g2d2 = c2−d2√
2

v5 =h1c3 + g1d3 = c3+d3√
2

v6 = h2c3 + g2d3 = c3−d3√
2

...
...

vn−1 = h1cn/2 + g1dn/2 =
cn/2+dn/2√

2
vn = h2cn/2 + g2dn/2 =

cn/2−dn/2√
2

Haar transform:
[
cM ,dM , . . . ,d2,d1

]
→ v

For k = 1, . . . , n/2j , j = 0, . . . ,M − 1

c j2k−1 =
c j+1
k +d j+1

k√
2

, c j2k =
c j+1
k −d j+1

k√
2

,

v := c0



The inverse Haar transform can be visualized as the pyramid
scheme

h h h
cM −→ cM−1 −→ cM−2 −→ . . . c1 −→ c0 .

g↗ g↗ g↗ g↗
dM dM−1 dM−2 . . . d1



Example 2.
We consider a transformed vector(
c3,d3,d2,d1

)
=
(
14
√

2, 2
√

2, 2, 0, 0,
√

2,
√

2, 0
)

and we want
to reconstruct the original vector.
First step:(
c2,d2,d1

)
=

(
14
√

2 + 2
√

2√
2

,
14
√

2− 2
√

2√
2

, 2
√

2, 2, 0, 0,
√

2,
√

2, 0

)
=

(
16, 12, 2, 0, 0,

√
2,
√

2, 0
)

First step:(
c1,d1

)
=

(
16 + 2√

2
,

16− 2√
2

,
12 + 0√

2
,

12− 0√
2

, 0,
√

2,
√

2, 0

)
=

(
9
√

2, 7
√

2, 6
√

2, 6
√

2, 0,
√

2,
√

2, 0
)

Third step:

c0=

(
9
√

2+0√
2

,
9
√

2−0√
2

,
7
√

2+
√

2√
2

,
7
√

2−
√

2√
2

,
6
√

2+
√

2√
2

,
6
√

2−
√

2√
2

, . . .

)
= (9, 9, 8, 6, 7, 5, 6, 6)



2D Haar transform
Grayscale image is represented by a matrix. Each pixel of the
image is represented by one element of the matrix, the value of the
element is of type uint8 (uint16, ...) and characterizes the shade of
gray (0 - black, 255 - white). 2D DWT of the matrix is obtained
by applying DWT on the rows and on the columns.

Original image Transformed image



Transformed image, M = 2 Transformed image, M = 3



Haar wavelets

Let f be a function defined on the interval [0, 1]. Our objective is
to find a multiscale representation (or approximation) of the
function f , i.e. to characterize a function f using functions on
certain scales (levels).

Such representation is useful for sparse representation of f , sparse
representation of operators, adaptive solution of PDEs, integral
equations, PIDEs, preconditioning of systems resulting from
discretization of PDEs, etc.

In the case of approximation by Haar wavelets, we approximate f
by a piecewise constant function.



Haar scaling function Haar wavelet

φ (x) = χ[0,1) (x) =

{
1 x ∈ [0, 1)

0 x /∈ [0, 1)
, ψ (x) =


1 x ∈ [0, 1/2)

−1 x ∈ [1/2, 1)

0 x /∈ [0, 1)



We denote by L2 (0, 1) the space of all real valued functions
defined on (0, 1) such that

1∫
0

f 2 (x) dx <∞.

Haar wavelet basis of the space L2 (0, 1) is generated using
translations and dilations of φ and ψ.

For j , k ∈ Z we define

φj ,k (x) = 2j/2φ
(
2jx − k

)
, ψj ,k (x) = 2j/2ψ

(
2jx − k

)
.

The parameter j is called a scale or a level and the parameter k is
a translation factor.



Theorem
The set

Ψ =
{
φ, ψj ,k , j ≥ 0, k = 0, . . . , 2j − 1

}
is an orthonormal basis of the space L2 (0, 1),
i.e. Ψ generates L2 (0, 1),∫

R

φ (x)φ (x) dx = 1,

∫
R

φ (x)ψj ,k (x) dx = 0,

and ∫
R

ψm,l (x)ψj ,k (x) dx =

{
1 j = m, k = l ,

0 otherwise.

The set Ψ is called a Haar wavelet basis.





Approximation of functions

Corollary. Any f ∈ L2 (0, 1) has a representation

f = cφ+
∞∑
j=0

2j−1∑
k=0

dj ,kψj ,k ,

where

c =

∫ 1

0
f (x)φ (x) dx , dj ,k =

∫ 1

0
f (x)ψj ,k (x) dx .

Hence, the function f can be approximated by a function

fJ = cφ+
J∑

j=0

2j−1∑
k=0

dj ,kψj ,k .



Example 3. f (x) = |cos (2πx)|, x ∈ [0, 1]

c =

∫ 1

0
f (x)φ (x) dx =

∫ 1

0
|cos (2πx)| 1dx =

2

π

d0,0 =

∫ 1

0
f (x)ψ0,0 (x) dx

=

∫ 1/2

0
|cos (2πx)| dx−

∫ 1

1/2
|cos (2πx)| dx =0

f0 = cφ+ d0,0ψ0,0 =
2

π

Approximation f0



Approximation f2 Approximation f3

Approximation f4 Approximation f5



Relation between scaling function, wavelet and scaling and wavelet
filters
The scaling function φ and the scaling filter h satisfy a scaling
equation

φ (x) = h1φ1,0 (x) + h2φ1,1 (x) = h1
√

2φ (2x) + h2
√

2φ (2x − 1)

and φ, ψ, and g are interrelated by a wavelet equation

ψ (x) = g1φ1,0 (x) + g2φ1,1 (x) = g1
√

2φ (2x) + g2
√

2φ (2x − 1) .

Vanishing moments
Haar wavelet has one vanishing moment, i.e.

∫ 1
0 ψ (x) dx = 0.

Therefore, all wavelets ψj ,k have vanishing moments, i.e.∫ 1
0 ψj ,k (x) dx = 0.

Theorem. The coefficients dj ,k satisfy |dj ,k | ≤ C2−3j/2 under the
assumption that f has continuous derivative on

[
k/2j , (k + 1)/2j

]
.



Wavelets
We use the standard notation L2 (R) for the space of real valued
functions defined on R such that∫

R

f 2 (x) dx <∞.

The inner product in this space is defined by

〈f , g〉 =

∫
R

f (x) g (x) dx

and the norm is defined by

‖f ‖ =
√
〈f , f 〉.

The symbol Cm (a, b) denotes the space of m-times continuously
differentiable functions on (a, b) .



Definition: The sequence of spaces Vj ⊂ L2 (R), j ≥ j0, is called a
multiresolution analysis, if Vj ⊂ Vj+1, the closure of the span of
∪j≥j0Vj is L2 (R), and if there exists a function φ such that
Φj = {φj ,k , k ∈ Z}, where

φj ,k (x) = 2j/2φ
(
2jx − k

)
,

is a basis of Vj . The function φ is called a scaling function.

Let us assume that the support of φ is [0,M − 1]. Since Vj ⊂ Vj+1

and Φj is a basis of Vj , there exists a vector h = (h1, . . . , hM) such
that

φ (x) =
M∑
k=1

hkφ1,k−1 (x) =
M∑
k=1

hk
√

2φ (2x + 1− k) .

This equation is called a scaling equation and h is called a scaling
filter (or low-pass filter).



Let Wj be such that Vj ⊕Wj = Vj+1 and let ψ be a function such
that

Ψj = {ψj ,k , k ∈ Z}

is a basis of Wj .

Since Wj ⊂ Vj+1, there exists coefficients g = (g1, . . . , gN) such
that

ψ (x) =
N∑

k=1

gkφ1,k−1 (x) =
N∑

k=1

gk
√

2φ (2x + 1− k) .

This equation is called a wavelet equation and g is called a wavelet
filter (high pass filter).



Definition: Under the above notation a family

Ψ = Φj0 ∪
∞⋃
j≥j0

Ψj

is called a wavelet basis of the space L2 (R), if Ψ is a Riesz basis of
the space L2 (R), i.e. there exist constants 0 < c < C <∞ such
that

c

∑
k∈Z

c2j0,k +
∞∑
j=j0

∑
k∈Z

d2
j ,k

 ≤
∫
R

∑
k∈Z

cj0,kφj0,k +
∞∑
j=j0

∑
k∈Z

dj ,kψj ,k

2

dx

≤ C

∑
k∈Z

c2j0,k +
∞∑
j=j0

∑
k∈Z

d2
j ,k

 .

The function ψ is called a wavelet. If Ψ is an orthonormal basis,
the function ψ is called an orthonormal wavelet.



Theorem. To any Riesz basis Ψ there exists a biorthogonal Riesz
basis Ψ̃ and Ψ̃ has the similar structure as Ψ, i.e there exist
functions φ̃ and ψ̃ such that

Ψ̃ =
{
φ̃j0,k , ψ̃j ,k , j ≥ j0, k ∈ Z

}
,

where

φ̃j ,k (x) = 2j/2φ̃
(
2jx − k

)
, ψ̃j ,k (x) = 2j/2ψ̃

(
2jx − k

)
.

Biorthogonality means that〈
φj ,k , φ̃m,l

〉
= δj ,mδk,l ,

〈
φj ,k , ψ̃m,l

〉
= 0,〈

ψj ,k , φ̃m,l

〉
= 0,

〈
ψj ,k , ψ̃m,l

〉
= δj ,mδk,l .

The function φ̃ is called a dual scaling function and the function ψ̃
is called a dual wavelet. Dual scaling filter h̃ and dual wavelet filter
g̃ are defined similarly as h and g.



Corollary. Any f ∈ L2 (R) has a representation

f (x) =
∑
k∈Z

cj0,kφj0,k +
∞∑
j=j0

∑
k∈Z

dj ,kψj ,k ,

where
cj ,k =

〈
f , φ̃j ,k

〉
, dj ,k =

〈
f , ψ̃j ,k

〉
.

The function f can be approximated by a function

fJ (x) =
∑
k∈Z

cj0,kφj0,k +
J∑

j=j0

∑
k∈Z

dj ,kψj ,k .



Vanishing moments
We say that a wavelet ψ has L vanishing moments, if∫

R
xkψ (x) dx = 0, k = 0, . . . , L− 1.

Theorem: If ψ̃ has L vanishing moments and f ∈ CL (0, 1), then

‖f − fJ‖ ≤ C2−LJ .

Theorem: If ψ̃ has L vanishing moments and f ∈ CL
(
supp ψ̃j ,k

)
,

then
|dj ,k | ≤ C2−j(L+1/2).



Discrete wavelet transform

filters: h = (h1, h2, . . . hM) - scaling (low-pass) filter,
g = (g1, g2, . . . gN) - wavelet (high-pass) filter

one step of DWT: v→ (c,d)

ck =
∑M

i=1 hiv2k−2+i , dk =
∑N

i=1 giv2k−2+i , k ∈ Z

(If necessary, v can be extended, e.g. by zero.)

DWT v→
[
cM ,dM , . . . ,d2,d1

]
h h h h

v −→ c1 −→ c2 −→ . . . cM−1 −→ cM .

↘g ↘g ↘g ↘g

d1 d2 d3 . . . dM



Inverse discrete wavelet transform (IDWT)

The inverse transform uses biorthogonal filters h̃ and g̃ and is
given by the formula:

c jk =
∑
n∈Z

h̃k−2nc
j+1
n+1 +

∑
n∈Z

g̃k−2nd
j+1
n+1,

where j = M − 1, . . . , 0 and k ∈ Z.

Schematically, IDWT can be visualized as the pyramid scheme

h̃ h̃ h̃
cM −→ cM−1 −→ cM−2 −→ . . . c1 −→ c0 .

g̃↗ g̃↗ g̃↗ g̃↗
dM dM−1 dM−2 . . . d1



Example 4. Daubechies Db2 filters are given by

h = 1√
2

(
1+
√
3

8 , 3+
√
3

8 , 3−
√
3

8 , 1−
√
3

8

)
,

g = 1√
2

(
1−
√
3

8 ,−3+
√
3

8 ,3+
√
3

8 ,−1−
√
3

8

)
Daubechies Db2 wavelet is an orthogonal wavelet, i.e. h̃ = h,
g̃ = g, φ̃ = φ, ψ̃ = ψ, and has two vanishing moments. The
scaling function is given as a solution of the scaling equation, both
the scaling function and wavelet have no analytic expressions, they
have not derivative.



Example 4.
We consider a vector v = (v1, v2, v3, v4, v5, v6).

We apply one step of DWT and we obtain a vector
(c,d) = (c0, c1, c2, c3, d0, d1, d2, d3), where

c0 = h10 + h20 + h3v1 + h4v2

c1 = h1v1 + h2v2 + h3v3 + h4v4

c2 = h1v3 + h2v4 + h3v5 + h4v6

c3 = h1v5 + h2v6 + h30 + h40

d0 = g10 + g20 + g3v1 + g4v2

d1 = g1v1 + g2v2 + g3v3 + g4v4

d2 = g1v3 + g2v4 + g3v5 + g4v6

d3 = g1v5 + g2v6 + g30 + g40



Extension of a vector v

• zero padding (zpd) -
. . . 0 0 0 0 1 2 3 4 5 0 0 0 0 . . .

• symmetrization (sym) -
. . . 4 3 2 1 1 2 3 4 5 5 4 3 2 . . . (half point),
. . . 5 4 3 2 1 2 3 4 5 4 3 2 1 . . . (whole point)

• asymmetric padding (asym) -
. . . -4 -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 . . .

• smooth padding of order 1 (sp1) -
. . . -3 -2 -1 0 1 2 3 4 5 6 7 8 9 . . .

• smooth padding of order 0 (sp0) -
. . . 1 1 1 1 1 2 3 4 5 5 5 5 5 . . .

• periodic padding (ppd) -
. . . 2 3 4 5 1 2 3 4 5 1 2 3 4 . . .



Applications of DWT

• sparse representation, compression, dimensionality reduction
of signals, data, and images

• detection of changes, singularities, edges

• time series analysis (to determine trend, periodicity, changes
in variability, prediction)

• removing noise, smoothing

• numerical solution of operator equations (to transform a
discretization matrix for a scaling basis to a discretization
matrix for a wavelet basis)



Applications of wavelet approximation

• sparse representation, compression of functions

• removing noise, smoothing, detection of changes of variability
for continuous signals

• sparse representation and compression of operators

• adaptive solution of PDEs, integral equations and PIDEs

• preconditioning of large systems arising from discretization of
operator equations

• numerical solution of high-dimensional problems overcoming
the curse of dimensionality

• high-order approximation of functions



Example 1. Sparse approximation

vi = |cos (2πxi )|, xi = i−1
199 , i = 1, . . . , 200

We apply DWT using Db2 wavelet family, M = 6 levels, and
symmetric extension (halfpoint) of the vector v. To obtain a sparse
approximation we apply thresholding with threshold T = 0.03.
The error of approximation is characterized by e = max |vi − wi | ,
where w is a reconstructed vector.

Input vector v Transformed vector Error



Table: Comparison of sparse approximations for several wavelet filters,
nnz is the number of nonzero elements

Haar Db2 Db3

T nnz error nnz error nnz error

0.1 40 0.0564 23 0.0598 26 0.0459

0.05 65 0.0350 35 0.0290 32 0.0395

0.03 79 0.0237 38 0.0239 38 0.0176



Table: Comparison of sparse approximations for several signal extensions,
nnz is the number of nonzero elements, T = 0.03.

Haar Db2 Db3

mode nnz error nnz error nnz error

sym 79 0.0237 38 0.0239 38 0.0176

zpd 82 0.0237 49 0.0239 57 0.0174

asym 79 0.0237 50 0.0239 64 0.0174

sp1 82 0.0237 33 0.0239 34 0.0176

sp0 79 0.0237 35 0.0239 35 0.0176

ppd 81 0.0237 38 0.0239 40 0.0176



Example 5: Image of Lena
We compute the decompositions for several image extensions.

We decompose the image on five levels using biorthogonal spline
wavelets 3/5. Then we threshold the wavelet coefficients greater
than 100 and we reconstruct an image. Let I and Î be arrays of
the size 512× 512 characterizing grey levels in the original image
and the reconstructed image, respectively. We compute

K :=
number of nonzero coefficients

number of pixels in an original image

and

relative error :=

√√√√√∑512
i ,j=1

(
I (i , j)− Î (i , j)

)2
∑512

i ,j=1 I (i , j)2
.

Furthermore, we compute the boundary error, i.e. the relative error
for the area near the boundary.



Image of Lena

method K error boundary

error

sp0 0.0210 0.0631 0.0457

sp1 0.0228 0.0631 0.0459

sym 0.0225 0.0632 0.0469

ppd 0.0293 0.0669 0.1226

asym 0.0369 0.0690 0.1510

zpd 0.0201 0.0735 0.1969

Table: Errors and ratios K for several image compression methods.
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