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B-splines

Definition: The (cardinal) B-spline By of degree N, N € N, is
defined by By = x[o,1) and

By (X) = By x By_1 (X) = /R B (t) Bn_1 (X — 1.') dt, N >2.

Theorem. For N € N the functions By have the following
properties:

1) By is supported in [0, N].

2) By (x) > 0 for all x € (0, N).

3) The function By is symmetric with respect to the point % i.e.

N N
Bn <2—x> = By <2+x> forall x eR.

4) [z Bn(x)dx =1.



5) For all x € R we have

N
B (0 = gy 2 (1 () 0 Y = (max 0.

k=0
6) By generates the multiresolution spaces
\/j:{f e 12(R)NCN1(R) : f|<i k+1) is a polynomial of order < N, k € Z}.
PR

7) By satisfies a scaling equation
Bn (x) = 3 ez hnV/2Bn (2x — n) with scaling coefficients

N
hn:2N+1/2<n> for n=0,...N, h,=0 otherwise.



Example 1. B-spline of order N =1

B-spline of order N = 1 is a Haar scaling function

Bi (x) = ¢ (x) = xpo.1) (x) = {; . Z {8 B
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Example 2. B-spline of order N =2

B-spline of order N = 2 is a linear B-spline called also a hat
function.

b% x€1[0,1),
BQ(X):fBl(t)Bl(X—t)dt: 2—x X€[1,2),

R 0 otherwise.




Example 3. B-spline of order N =3
B-spline of order N = 3 is a quadratic B-spline.

5
—X2—|—3X—§,
Bs(X):/Bl(t) By (x —t)dt = =~ 92
R 5 X+§,

0,
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x €[0,1],

x€[2,3],

otherwise.



Example 3. B-spline of order N = 4

B-spline of order N = 4 is a cubic B-spline.

B4(X) =

/

x3

5 X € [0, 1],
242 —2x+ 2, xel1,2

Bi(t)Bs(x —t)dt = % —4x®+10x - 2, x€[2,3],
3
@, x € [3,4],
, otherwise.
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Spline wavelet bases on the real line

The following construction was proposed in [Cohen, Daubechies,
and Feauveau, 1992].

We define a primal scaling function as ¢ = By for a chosen
N € N. We choose the number of vanishing moments of a wavelet
v as N € N such that N > N and N + N is even.

The symbols of the scaling function ¢ and ¢ are defined by

1 . 1 .
m(w) =— hpe™"™, mw)=—= h,e™"™.
Since h, = 2_N+1/2(/,\11) for n=20,... N, and h, = 0 otherwise, we

have M N
1 /N\ _. e w1
o= 30 (B 5
n=0



Lemma: The biorthogonality of ¢ and q} implies
m(w)m(w)+m(w+m)m(w+m)=1.

Thus, for the given symbol m(w) we find a trigonometric
polynomial M (w) such that the above identity is satisfied.

Lemma: For M € N let us define a polynomial
M—1
B M—-1+n\ ,
pm (x) = HEO ( N >X :

Then (1 —x)" py (x) + xMppy (1 — x) =1 for all x € R.
Replacing x by sinz%, we obtain

(coszg) " (sin2g> + coszw tm : sin2w i
> Pm > > Pm >




Therefore, it is sufficient to find trigonometric polynomials
satisfying

m (W) (w) = (cos2ﬂ)“” pwr (522

2 2
We set M = NN and we replace e by z. The symbol of ¢
satisfies . N N
W:(e’w—kl) :<z—|—1>
2N 2
We have

. . 2 2
Cos2g _ eiw/2 + e—iw/2 _ \/E—|— % _ (Z + 1)2
2 2 2 4z

Thus, the scaling coefficients lN1,, of the dual scaling function are
given by:

z+1 B z—i—1)2M (z—i—l)2
( 2 ) fzh”z —zszPM(l—le)




The wavelet filters are given by
gn=(-1)"hi_n, & =(-1)"hp,

and wavelets are given by

"/}(X) = Zgn\ﬁﬁb(b(_ ”)a QZ(X) = Zénﬁq;(zx_ n)'

neZ n€Z

Theorem: Functions ¢ and 1 generates a wavelet basis W of the
space L2 (R), and wavelets have N vanishing moments. Functions
® and 1) generate a wavelet basis U of the space L2 (R), which is
biorthogonal to W and wavelets have N vanishing moments.



Construction

1. Choose the order of spline N and the number of vanishing
moments N such that N > N and N + N is even. Set ¢ = By and
compute h, =2~ N+1/2( ) forn=0,...N.

2. Set M = (N + N)/2 and compute py (x) = ZQ/’;O:[ (MfH")x”.

n

3. Compute scaling coefficients h, using

2M 2
() s e 52

nEZ

4. Compute wavelet filters
8n = (_l)n Blfna gn = (_1)n hlfn-

5. Primal scaling functions and wavelets are splines and are given
explicitly. Dual scaling functions and wavelets are given by scaling
and wavelet equations.



Example 6. Let N =3 and N = 5. Scaling filter is given by
h = (474’47’)/‘[
Then M = N+N =4 and

M—-1
M—1
pm(x) = ( N +”)x”:1+4x+10x2+20x3‘

and the scaling coefficients h, of the dual scaling function are
given by:

z+1 (z+1)*M (z+1)°
( ) 3 b= e (1= F )




We obtain

. (z+1)° /-5 5 131
2N R = o il
V2) haz 24 \1623 " 222 16z
neZ

5 15 5,19 5

~ 2567 +256 2567~
L5, 138 o7 19

—Z - ——z

128 128~ 256~ ' 256~

Hence, we have

72
3\

L5 18 19 o7 b3 175
256’ 256 256’ 256’ 128 ' 128" 128’

131z n 572 573
16 2 16
13 175

97 4 3,22 2
256 128 128
15 5 5

*‘556 256~

—-13 —-97 19 15

-5
1287 256 7 256 256’ 256>‘



Table: Scaling coefficients of primal and dual scaling functions for several
values of parameters N and N.

V2{h) | ﬁ{h}
{1,1} 1 {1,1}
—1 1 1 -1
3 {%.5LLg3s)
5 3 -3 11 11991 -11 -3 3
1287 1287 64 > 64 7 77 647 64 ° 1287 128
1 1 -1 1 3 1 -1
{3:1,3} |2 (#3337
4 3 =3 -1 19 4 19 -1 -3 3
64° 64° 4 232032°32° 4’ 64 64
{l§§l 3 3 =9 —7 45 45 -7 -9 3
45 45 40 4 327 329 327327327 327 32 32
5 |f{=5 15 10 97 _13 175 175 13 —97 19 15 _5

2562567 256° 256’ 128 ° 1287 1287 128 * 256 > 256’ 256’ 256




The Sobolev regularity v of a function f is defined by
v:=sup{s:feH (R)},

where H® (R) denotes the standard Sobolev space.

The Sobolev regularity of the primal scaling function ¢ = By is
vy=N-— % The Sobolev regularity of the dual scaling functions
can be computed by the algorithm from [Eirola, 1992].



Table: Sobolev exponent of smoothness 5 of the dual scaling function ¢.

NIN| 5% |[N|IN| 5 |[N|IN| 7

21204413 |3(0175| 4| 6 | 0.344
2| 4[1175|3|5[0793| 4| 8 | 0.862
216(1793| 3|7 |1344| 4 |10 1.363




Biorhogonal scaling functions and wavelets for N =1 and N=1
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Biorhogonal scaling functions and wavelets for N = 1 and N =3
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Biorhogonal scaling functions and wavelets for N = 2 and N =4




Biorhogonal scaling functions and wavelets for N = 2 and N =6




Biorhogonal scaling functions and wavelets for N = 3 and N=5




Biorhogonal scaling functions and wavelets for N = 4 and N =6
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Wavelet bases on the interval

Let H be a Sobolev space or the L2—space, J be an index set and
let A € J take the form A = (j, k). A wavelet basis of H is defined
as a family W = {¢)\, A € J} such that

i) W is a Riesz basis for H, i.e. the closure of the span of W is H
and there exist constants ¢, C € (0, c0) such that

> bA¢A

reT

clbll, < < Clbl,

for all b = {by},c s such that b/2\ < oo, inf C/supcis
AeJ
called the condition number of V.
i) The functions are local in the sense that
diam supp 1y < C2~1M for all A € 7, and at a given level j
the supports of only finitely many wavelets overlap at any
point x.



A wavelet basis on the interval | has typically the hierarchical

structure:
U U v
J=Jo

(DJI-O = {quo o k€T } - the set of scaling functions
= {1!@- k€ JJ} - the set of wavelets

Wavelets and scaling functions in the inner part of the interval are
typically translations and dilations of one or several functions.
Wavelets and scaling functions near the boundary are dilations of
some special functions called boundary scaling functions and
boundary wavelets.

We assume that wavelets have vanishing moments, i.e.
m — —_—
/x Yik(x)dx=0, m=0,...L—-1, keJ,
I

where L > 1 is dependent on the type of a wavelet.



Wavelet bases on product domains

Let W/ and W/ be wavelet bases on intervals / and J, respectively.
A wavelet basis W on the rectangle / x J can be constructed by an
anisotropic approach, i.e. ¥ = W/ @ W/ where ® denotes a tensor
product, or by an isotropic approach:

v=rFRulJ(gueug),
Jj=io

ool oo keTiien},

{

Gjl _ {ijk@%l/ ¢Jl',k®¢jJJHH’k€I/’/€‘7J}’
{ !
{

Jk®¢JJl/ wj,k®¢f,/HH7k€«7/7/€Ij
el @Y7,/ Qb},k@lpj{lHH7k€~7l,/€‘7J}‘




Quadratic spline wavelets satisfying homogeneous
boundary conditions [Cerna, Fingk, 2018]

The objective is to construct a wavelet basis on Qg = (0,1)7,
d = 1,2, that satisfies the following properties:

Riesz basis property. We construct Riesz bases of H(:)l (Qq).
Locality. The primal basis functions are local.

Vanishing moments. The wavelets have one vanishing moment.
Polynomial exactness. Since the basis functions are quadratic
splines, the primal multiresolution analysis has polynomial
exactness of order three.

Short support. The wavelets have the shortest possible support
among quadratic spline wavelets with one vanishing moment.
Closed form. The basis functions and wavelets have an explicit
expression.

Homogeneous Dirichlet boundary conditions. The wavelet basis
satisfies homogeneous Dirichlet boundary conditions of the first
order.

Well-conditioned bases. The wavelet basis is well-conditioned.



Let ¢ be a quadratic B-spline defined on knots [0,1,2,3]. It can be
written explicitly as:

%, x € [0,1],
—x>+3x—3, xe[1,2],
T —3x+13, x€[2,3],

0, otherwise.

Let ¢p be a multiple of the quadratic B-spline defined on knots
[0,0,1,2] such that ||¢p| ;1 = ||@] 1. i-e.

—9%2 +3x, x€]0,1],
dp(x) = 22 _3x+3, xelL,2],

0, otherwise.
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Figure: Scaling functions (left) and wavelets (right).
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For j > 2 and x € [0, 1] we set

dik(x) = 2Pe(x—k+2), k=2,.,2 -1,
$ja(x) = 212(2x), G 2i(x) = 22¢,(20(1 - x)).

Scaling functions on the level j = 2.
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We define a wavelet ¢ and a boundary wavelet v, as

—pp(2x) <Z>(2x)'

1 1
U(x) = —582x-1)450(2x-2) and p(x) =~ =4 25

Then supp ) = [0.5,2.5], supp ¢, = [0, 1.5], and both wavelets
have one vanishing moment, i.e.

/00 P(x)dx =0 and /OO Pp(x)dx = 0.



The wavelets ¢ and 1, have the shortest possible support.

Lemma. Let ¢ be defined as above. If

Y €span{¢(2-—k),k € Z} and 1 has one vanishing moment,
then the length of the support of ¢ is at least two. Similarly, the
boundary wavelet 1, has the shortest possible support among all
boundary wavelets with one vanishing moment generated from
scaling functions ) and .



For j > 2 and x € [0, 1] we define

bir(x) = 2PY@Ix—k+2),k=2,..,2 -1,
Yia(x) = 2PPp(Px),  (x) = =2 Py,(2(1 - x)).

We denote the index sets by
Ij=4{keZ:1<k<2}.
We define
® ={djkeLi}, Vj={vjkel},

and

00 Jo+s—1
V=0 ul v, wv=0,U0 [ v, jo=2
j=2 J=o



We use the isotropic approach for the construction of a wavelet
basis W22 on Q, = (0,1)2.

0.6
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0.4 AR 440 \“\ %
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Figure: Scaling function ¢ ® ¢ (upper left) and wavelets ¢ ® ¢ (upper
right), ¥ ® ¢ (lower left), and 1) @ 1) (lower right).



Let || 1 (0,1) denotes the HZ (0, 1)-seminorm, i.e.

\f|Hg(o,1) =

Theorem. The set W when normalized with respect to the
Hl-seminorm, i.e. the set

{¢2,k/ |2kl 20,1y - K € Iz} U {%’,k/ ikl 0,0y J 2 2k € Ij} ;
is a Riesz basis of Hj (0,1).

Theorem. The set W2P normalized with respect to the
H!-seminorm is a Riesz basis of H} ((O7 1)2>.



Quantitative properties

We present the condition numbers of the stiffness matrices for the
Helmholtz equation

—eAu+au=f on Qy, wu=0o0n0Qy,,

where A is the Laplace operator, € and a are positive constants.
We also study the case ¢ =1 and a = 0, i.e. the Poisson equation,
and the case e =0 and a = 1.

An advantage of discretizing elliptic equations using a wavelet
basis is that the discrete system can be simply preconditioned by a
diagonal preconditioner [Dahmen, Kunoth, 1992].



Let W* be a wavelet basis with s levels of wavelets. We define
A, =c (VU VU +a (U W) ug=(ug)” WS, f5 = (F, W),

Let Dg be a matrix of diagonal elements of the matrix Ag, i.e.
(Ds)y, = (As)y, Or- We set

AS - (DS)_1/2 AS (DS)_1/2 ) l’]S = ( )1/2 Us, Fs = (DS)_1/2 fs
and we obtain the preconditioned finite-dimensional system
Aiis = f.

The matrix As is symmetric and positive definite and the condition
numbers are uniformly bounded, i.e.

cond A, < C,

where C is a constant independent on s.

The condition numbers of the stiffness matrices A, correspond to
the squares of the condition numbers of W* with respect to the
H-seminorm.



Table: The condition numbers of the stiffness matrices AS of the size

N x N corresponding to multiscale wavelet bases with s levels of wavelets

for the one-dimensional and the two-dimensional Poisson equation.

1D 2D
s N Amin  Amax condAg N Amin Amax condAg
1 8 050 1.38 2.77 64 025 1.88 7.5
2| 16 050 1.41 2.83 256 0.19 2.08 11.1
3] 32 050 1.42 2.83 1024 016 2.17 13.7
4| 64 050 1.42 2.84 409 0.14 220 15.4
5| 128 050 1.42 2.84 16 384 0.13 222 16.6
6| 256 050 1.42 2.84 65536 0.13 2.23 17.4
7| 512 050 1.42 284 | 262144 012 223 17.9
8| 1024 050 1.42 2.84 (1048576 0.12 2.23 18.3



Table: The condition numbers of the stiffness matrices AS of the size
N x N corresponding to multiscale wavelet bases with s levels of wavelets
for the three-dimensional Poisson equation.

N Amin Amax condAg

512 0.15 3.23 47.4
4096 0.04 3.69 85.0
32768 0.03 3.83  113.8
262144 0.03 3.87 1329
2097152 0.03 3.89 1453

W NN R0



Table: The condition numbers of the stiffness matrices A of the size
65536 x 65536 for several choices of € and a.

€ a CF, CFs CF" CFY™  CQ D, Ds
1000 1| 174 163 171 164 620 116.3 98.4
1 0| 174 167 171 164 620 116.3 98.4
1 1| 174 167 171 164 620 116.6 98.5
1072 1| 721 359 356 225 61.1 3281 1392
107° 1 |746.0 577.0 4257 287.6 463 1878.0 11154
0 1]8726 687.4 511.0 3515 46.4 2034.6 12514

CFj, - the constructed basis with the coarsest level jo, CF2'" - the
constructed basis with orthogonalization of scaling functions on
the coarsest level, CQ - Chui-Quak semiorthogonal spline wavelets,
D;, - Dijkema spline wavelets with the coarsest level jo



1D, e=1, a=0 1D, =0, a=1
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Figure: The condition numbers of the matrices A, s=J — jo+ 1, for the
Helmholtz equation with parameters e =1, a=0, and e =0, a=1. The
parameter J denotes the finest level and jo denotes the coarsest level.



2D-iso
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Figure: The condition numbers of the matrices As, s=J—jo+1, for
€ =1, a =0 and two-dimensional wavelet bases constructed using an
isotropic approach and an anisotropic approach. The parameter J
denotes the finest level and jo denotes the coarsest level.



Multilevel Galerkin method

We consider the Helmholz equation for €25, e =1 and a = 0. The
right-hand side f is such that the solution u is given by

u(x,y)=v(x)v(y), v(x)=x(1- e50X*50) .

We discretize the equation using the Galerkin method with the
constructed wavelet basis and we obtain discrete problem
Aii; = f,. We solve it by conjugate gradient method using a
simple multilevel approach.

1. Compute A, and fs, choose vg of the length 42.

2. For j=0,...,s find the solution ii; of the system Ajﬁj = lN'"j by
conjugate gradient method with initial vector v; defined for j > 1

by
) = i1, i=1,...k,
! 0, i=ky,..., ki1,

where k; = 220+1)



Let us be an approximate solution obtained by multilevel Galerkin
method with s levels of wavelets.

Theorem: If we use the criterion for terminating iterations

l|rs]l, < C2725, where rs := Aiis — f5, then

lu—usl < C27%,  Jlu—uslly, < C27%.

For the given number of levels s we used the criterion

[¥rill, <107%27%, j =0,...,s, for terminating iterations in each
level.

We denote the number of iterations on the level j as M;. One CG
iteration can be performed with complexity of the order O (N),
where N x N is the size of the matrix. Therefore the number of
operations needed to compute one CG iteration on the level j
requires about one quarter of operations needed to compute one
CG iteration on the level j 4 1, we compute the total number of
equivalent iterations by

s
M.
M = Z 4s—j"
j=0



We compute experimental rates of convergence rp and ry as

log ([|us—1 — ull / [us — ul])
log 2

log ([lus—1 — ullo. / llus — ull)

log 2 '

r

)

roo =

We present also the wall clock time. It includes the computation of
the right-hand side, the system matrix, iterations and evaluation of
the solution on the grid with the step size 2770~5, where jy is the
coarsest level.



Table: Number of iterations, error estimates, and computational time for
multilevel conjugate gradient method.

s N M —ully e lus—ull ry  time [s]
1 64 18.50 3.1%e-1 4.54e-2 0.04
2 256 21.63 1.32e-1 1.27 1.26e-3 5.17 0.05
3 1024 23.66 2.60e-2 2.34 2.02e-3 2.64 0.06
4 4096 23.00 2.91e-3 3.16 2.45e-4 3.04 0.09
5 16 384 20.89 4.06e-4 2.84 2.89e-5 3.08 0.16
6 65 536 18.37 5.35e-5 292  34le-6 3.08 0.30
7 262 144 15.68 6.82e-6 2.97 4.23e-7 3.01 0.99
8 1048576 13.02 8.63e-7 2.98 5.28e-8 3.00 3.89
9 4194304 10.35 1.08e-7 3.00 6.59-9 3.00 14.87
10 16777216  8.85 1.41e-8 294 8.25e-10 3.00 58.12




Table: Error estimates for multilevel conjugate gradient method.

CF | Primbs, Dijkema | Chui and Quak

s | llus — ull [Jus — ull o Jus — ull oo
1 3.19e-1 3.19e-1 3.19e-1
2 1.32e-1 1.32e-1 1.32e-1
3 2.60e-2 2.60e-2 2.60e-2
4 2.91e-3 2.91e-3 2.91e-3
5 4.06e-4 4.06e-4 4.06e-4
6 5.35e-5 5.35e-5 5.35e-5
7 6.82e-6 6.84e-6 6.84e-6
8 8.63e-7 8.64e-7 8.64e-7
9 1.08e-7 1.09e-7 1.08e-7
10 1.41e-8 1.38e-8 1.36e-8




Table: Number of iterations and computational time for multilevel
conjugate gradient method.

CF Primbs, Dijkema | Chui and Quak
s M time [s] M time [s] M time [s]
1] 18.50 0.04 | 27.50 0.04 | 13.00 0.03
2| 21.63 0.05 | 48.88 0.07 | 30.25 0.05
3| 23.66 0.06 | 59.22 0.11 | 35.06 0.07
4 | 23.00 0.09 | 59.38 0.19 | 33.82 0.14
5| 20.89 0.16 | 50.76 0.33 | 30.30 0.21
6 | 18.37 0.30 | 39.44 0.68 | 25.32 0.41
7| 15.68 0.99 | 29.92 2.20 | 20.74 1.39
8| 13.02 3.89 | 21.50 9.53 | 17.87 5.55
91 10.35 14.87 | 17.66 47.39 | 14.82 21.62
10| 8.85 58.12 | 15.79 248.41 | 12.36 83.54
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