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B-splines

Definition: The (cardinal) B-spline BN of degree N, N ∈ N, is
defined by B1 = χ[0,1) and

BN (x) = B1 ∗ BN−1 (x) =

∫
R
B1 (t)BN−1 (x − t) dt, N ≥ 2.

Theorem. For N ∈ N the functions BN have the following
properties:

1) BN is supported in [0,N].

2) BN (x) > 0 for all x ∈ (0,N).

3) The function BN is symmetric with respect to the point N
2 , i.e.

BN

(
N

2
− x

)
= BN

(
N

2
+ x

)
for all x ∈ R.

4)
∫
R BN (x) dx = 1.



5) For all x ∈ R we have

BN (x) =
1

(N − 1)!

N∑
k=0

(−1)k
(
N

k

)
(x − k)N−1

+ , xN+ = (max {0, x})N.

6) BN generates the multiresolution spaces

Vj=

{
f ∈ L2 (R)∩CN−1 (R) : f |( k

2j
, k+1

2j

) is a polynomial of order ≤ N, k ∈ Z
}
.

7) BN satisfies a scaling equation
BN (x) =

∑
n∈Z hn

√
2BN (2x − n) with scaling coefficients

hn = 2−N+1/2

(
N

n

)
for n = 0, . . .N, hn = 0 otherwise.



Example 1. B-spline of order N = 1

B-spline of order N = 1 is a Haar scaling function

B1 (x) = φ (x) = χ[0,1) (x) =

{
1 x ∈ [0, 1) ,

0 x /∈ [0, 1) .



Example 2. B-spline of order N = 2

B-spline of order N = 2 is a linear B-spline called also a hat
function.

B2 (x) =
∫
R
B1 (t)B1 (x − t) dt =


x x ∈ [0, 1) ,

2− x x ∈ [1, 2) ,

0 otherwise.



Example 3. B-spline of order N = 3

B-spline of order N = 3 is a quadratic B-spline.

B3(x) =

∫
R

B1 (t)B2 (x − t) dt =



x2

2 , x ∈ [0, 1],

−x2 + 3x − 3
2 , x ∈ [1, 2],

x2

2 − 3x + 9
2 , x ∈ [2, 3],

0, otherwise.



Example 3. B-spline of order N = 4

B-spline of order N = 4 is a cubic B-spline.

B4(x) =

∫
R

B1 (t)B3 (x − t) dt =



x3

6 , x ∈ [0, 1],

− x3

2 + 2x2 − 2x + 2
3 , x ∈ [1, 2],

x3

2 − 4x2 + 10x − 22
3 , x ∈ [2, 3],

(4−x)3

6 , x ∈ [3, 4],

0, otherwise.



Spline wavelet bases on the real line

The following construction was proposed in [Cohen, Daubechies,
and Feauveau, 1992].

We define a primal scaling function as φ = BN for a chosen
N ∈ N. We choose the number of vanishing moments of a wavelet
ψ as Ñ ∈ N such that Ñ ≥ N and N + Ñ is even.

The symbols of the scaling function φ and φ̃ are defined by

m (ω) =
1√
2

∑
n∈Z

hne
−inω, m̃ (ω) =

1√
2

∑
n∈Z

h̃ne
−inω.

Since hn = 2−N+1/2
(N
n

)
for n = 0, . . .N, and hn = 0 otherwise, we

have

m (ω) =
N∑

n=0

1

2N

(
N

n

)
e−inω =

(
e−iω + 1

)N
2N

.



Lemma: The biorthogonality of φ and φ̃ implies

m (ω)m̃ (ω) + m (ω + π)m̃ (ω + π) = 1.

Thus, for the given symbol m (ω) we find a trigonometric
polynomial m̃ (ω) such that the above identity is satisfied.

Lemma: For M ∈ N let us define a polynomial

pM (x) =
M−1∑
n=0

(
M − 1 + n

n

)
xn.

Then (1− x)M pM (x) + xMpM (1− x) = 1 for all x ∈ R.
Replacing x by sin2 ω

2 , we obtain

(
cos2ω

2

)M
pM

(
sin2ω

2

)
+

(
cos2ω + π

2

)M

pM

(
sin2ω + π

2

)
= 1.



Therefore, it is sufficient to find trigonometric polynomials
satisfying

m (ω)m̃ (ω) =
(

cos2ω

2

)M
pM

(
sin2ω

2

)
.

We set M = N+Ñ
2 and we replace e iω by z . The symbol of φ

satisfies

m (ω) =

(
e iω + 1

)N
2N

=

(
z + 1

2

)N

.

We have

cos2ω

2
=

(
e iω/2 + e−iω/2

2

)2

=

(√
z + 1√

z

2

)2

=
(z + 1)2

4z
.

Thus, the scaling coefficients h̃n of the dual scaling function are
given by:(

z + 1

2

)N 1√
2

∑
n∈Z

h̃nz
−n =

(z + 1)2M

4MzM
pM

(
1− (z + 1)2

4z

)
.



The wavelet filters are given by

gn = (−1)n h̃1−n, g̃n = (−1)n h1−n,

and wavelets are given by

ψ (x) =
∑
n∈Z

gn
√

2φ (2x − n) , ψ̃ (x) =
∑
n∈Z

g̃n
√

2φ̃ (2x − n) .

Theorem: Functions φ and ψ generates a wavelet basis Ψ of the
space L2 (R), and wavelets have Ñ vanishing moments. Functions
φ̃ and ψ̃ generate a wavelet basis Ψ̃ of the space L2 (R), which is
biorthogonal to Ψ and wavelets have N vanishing moments.



Construction

1. Choose the order of spline N and the number of vanishing
moments Ñ such that Ñ ≥ N and N + Ñ is even. Set φ = BN and
compute hn = 2−N+1/2

(N
n

)
for n = 0, . . .N.

2. Set M = (N + Ñ)/2 and compute pM (x) =
∑M−1

n=0

(M−1+n
n

)
xn.

3. Compute scaling coefficients h̃n using(
z + 1√

2

)N 1

2

∑
n∈Z

h̃nz
−n =

(z + 1)2M

4MzM
pM

(
1− (z + 1)2

4z

)
.

4. Compute wavelet filters

gn = (−1)n h̃1−n, g̃n = (−1)n h1−n.

5. Primal scaling functions and wavelets are splines and are given
explicitly. Dual scaling functions and wavelets are given by scaling
and wavelet equations.



Example 6. Let N = 3 and Ñ = 5. Scaling filter is given by
h =

(
1
4 ,

3
4 ,

3
4 ,

1
4

)
/
√

2.

Then M = N+Ñ
2 = 4 and

pM (x) =
M−1∑
n=0

(
M − 1 + n

n

)
xn = 1 + 4x + 10x2 + 20x3

and the scaling coefficients h̃n of the dual scaling function are
given by:(

z + 1√
2

)N 1

2

∑
n∈Z

h̃nz
−n =

(z + 1)2M

4MzM
pM

(
1− (z + 1)2

4z

)
.



We obtain

√
2
∑
n∈Z

h̃nz
−n =

(z + 1)5

24z4

(
−5

16z3
+

5

2z2
− 131

16z
+ 13− 131z

16
+

5z2

2
− 5z3

16

)
= − 5

256
z−7+

15

256
z−6+

19

256
z−5− 97

256
z−4− 13

128
z−3+

175

128
z−2

+
175

128
z−1 − 13

128
− 97

256
z +

19

256
z2 +

15

256
z3 − 5

256
z4.

Hence, we have

h̃ =
1√
2

(
−5

256
,

15

256
,

19

256
,
−97

256
,
−13

128
,

175

128
,

175

128
,
−13

128
,
−97

256
,

19

256
,

15

256
,
−5

256

)
.



Table: Scaling coefficients of primal and dual scaling functions for several
values of parameters N and Ñ.

N
√

2 {hn} Ñ
√

2
{
h̃n
}

1 {1, 1} 1 {1, 1}
3

{−1
8 ,

1
8 , 1, 1,

1
8 ,
−1
8

}
5

{
3

128 ,
−3
128 ,

−11
64 ,

11
64 , 1, 1,

11
64 ,
−11
64 ,

−3
128 ,

3
128

}
2

{
1
2 , 1,

1
2

}
2

{−1
4 ,

1
2 ,

3
2 ,

1
2 ,
−1
4

}
4

{
3

64 ,
−3
64 ,
−1
4 ,

19
32 ,

45
32 ,

19
32 ,
−1
4 ,
−3
64 ,

3
64

}
3

{
1
4 ,

3
4 ,

3
4 ,

1
4

}
3

{
3

32 ,
−9
32 ,
−7
32 ,

45
32 ,

45
32 ,
−7
32 ,
−9
32 ,

3
32

}
5
{−5

256 ,
15

256 ,
19

256 ,
−97
256 ,

−13
128 ,

175
128 ,

175
128 ,

−13
128 ,

−97
256 ,

19
256 ,

15
256 ,

−5
256

}



The Sobolev regularity γ of a function f is defined by

γ := sup {s : f ∈ Hs (R)} ,

where Hs (R) denotes the standard Sobolev space.

The Sobolev regularity of the primal scaling function φ = BN is
γ = N − 1

2 . The Sobolev regularity of the dual scaling functions
can be computed by the algorithm from [Eirola, 1992].



Table: Sobolev exponent of smoothness γ̃ of the dual scaling function φ̃.

N Ñ γ̃ N Ñ γ̃ N Ñ γ̃

2 2 0.441 3 3 0.175 4 6 0.344

2 4 1.175 3 5 0.793 4 8 0.862

2 6 1.793 3 7 1.344 4 10 1.363



Biorhogonal scaling functions and wavelets for N = 1 and Ñ = 1

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.5

0

0.5

1
1φ

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.5

0

0.5

1

1,1ψ

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.5

0

0.5

1
1,1φ̃ =1φ

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.5

0

0.5

1

1,1ψ̃ =1,1ψ



Biorhogonal scaling functions and wavelets for N = 1 and Ñ = 3
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Biorhogonal scaling functions and wavelets for N = 2 and Ñ = 4
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Biorhogonal scaling functions and wavelets for N = 2 and Ñ = 6
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Biorhogonal scaling functions and wavelets for N = 3 and Ñ = 5
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Biorhogonal scaling functions and wavelets for N = 4 and Ñ = 6
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Wavelet bases on the interval

Let H be a Sobolev space or the L2–space, J be an index set and
let λ ∈ J take the form λ = (j , k). A wavelet basis of H is defined
as a family Ψ = {ψλ, λ ∈ J } such that

i) Ψ is a Riesz basis for H, i.e. the closure of the span of Ψ is H
and there exist constants c ,C ∈ (0,∞) such that

c ‖b‖2 ≤

∥∥∥∥∥∑
λ∈J

bλψλ

∥∥∥∥∥
H

≤ C ‖b‖2 ,

for all b = {bλ}λ∈J such that
∑
λ∈J

b2
λ <∞, inf C/ sup c is

called the condition number of Ψ.

ii) The functions are local in the sense that
diam supp ψλ ≤ C2−|λ| for all λ ∈ J , and at a given level j
the supports of only finitely many wavelets overlap at any
point x .



A wavelet basis on the interval I has typically the hierarchical
structure:

ΨI = ΦI
j0 ∪

∞⋃
j=j0

ΨI
j .

ΦI
j0

=
{
φIj0,k , k ∈ Ij0

}
- the set of scaling functions

ΨI
j =

{
ψI
j ,k , k ∈ Jj

}
- the set of wavelets

Wavelets and scaling functions in the inner part of the interval are
typically translations and dilations of one or several functions.
Wavelets and scaling functions near the boundary are dilations of
some special functions called boundary scaling functions and
boundary wavelets.

We assume that wavelets have vanishing moments, i.e.∫
I
xmψj ,k (x) dx = 0, m = 0, . . . L− 1, k ∈ Jj ,

where L ≥ 1 is dependent on the type of a wavelet.



Wavelet bases on product domains
Let ΨI and ΨJ be wavelet bases on intervals I and J, respectively.
A wavelet basis Ψ on the rectangle I × J can be constructed by an
anisotropic approach, i.e. Ψ = ΨI ⊗ΨJ , where ⊗ denotes a tensor
product, or by an isotropic approach:

Ψ = Fj0 ∪
∞⋃
j=j0

(
G 1
j ∪ G 2

j ∪ G 3
j

)
,

where

Fj =
{
φIj ,k ⊗ φJj ,l /

∥∥∥φIj ,k ⊗ φJj ,l∥∥∥
H
, k ∈ II , l ∈ IJ

}
,

G 1
j =

{
φIj ,k ⊗ ψJ

j ,l /
∥∥∥φIj ,k ⊗ ψJ

j ,l

∥∥∥
H
, k ∈ II , l ∈ JJ

}
,

G 2
j =

{
ψI
j ,k ⊗ φJj ,l /

∥∥∥ψI
j ,k ⊗ φJj ,l

∥∥∥
H
, k ∈ JI , l ∈ IJ

}
,

G 3
j =

{
ψI
j ,k ⊗ ψJ

j ,l /
∥∥∥ψI

j ,k ⊗ ψJ
j ,l

∥∥∥
H
, k ∈ JI , l ∈ JJ

}
.



Quadratic spline wavelets satisfying homogeneous
boundary conditions [Černá, Finěk, 2018]
The objective is to construct a wavelet basis on Ωd = (0, 1)d ,
d = 1, 2, that satisfies the following properties:
Riesz basis property. We construct Riesz bases of H1

0 (Ωd).
Locality. The primal basis functions are local.
Vanishing moments. The wavelets have one vanishing moment.
Polynomial exactness. Since the basis functions are quadratic
splines, the primal multiresolution analysis has polynomial
exactness of order three.
Short support. The wavelets have the shortest possible support
among quadratic spline wavelets with one vanishing moment.
Closed form. The basis functions and wavelets have an explicit
expression.
Homogeneous Dirichlet boundary conditions. The wavelet basis
satisfies homogeneous Dirichlet boundary conditions of the first
order.
Well-conditioned bases. The wavelet basis is well-conditioned.



Let φ be a quadratic B-spline defined on knots [0, 1, 2, 3]. It can be
written explicitly as:

φ(x) =



x2

2 , x ∈ [0, 1],

−x2 + 3x − 3
2 , x ∈ [1, 2],

x2

2 − 3x + 9
2 , x ∈ [2, 3],

0, otherwise.

Let φb be a multiple of the quadratic B-spline defined on knots
[0, 0, 1, 2] such that ‖φb‖L1 = ‖φ‖L1 , i.e.

φb(x) =


−9x2

4 + 3x , x ∈ [0, 1],
3x2

4 − 3x + 3, x ∈ [1, 2],

0, otherwise.



Figure: Scaling functions (left) and wavelets (right).



For j ≥ 2 and x ∈ [0, 1] we set

φj ,k(x) = 2j/2φ(2jx − k + 2), k = 2, ..., 2j − 1,

φj ,1(x) = 2j/2φb(2jx), φj ,2j (x) = 2j/2φb(2j(1− x)).

Scaling functions on the level j = 2.



We define a wavelet ψ and a boundary wavelet ψb as

ψ(x) = −1

2
φ(2x−1)+

1

2
φ(2x−2) and ψb(x) =

−φb(2x)

2
+
φ(2x)

2
.

Then suppψ = [0.5, 2.5], suppψb = [0, 1.5], and both wavelets
have one vanishing moment, i.e.∫ ∞

−∞
ψ(x)dx = 0 and

∫ ∞
−∞

ψb(x)dx = 0.



The wavelets ψ and ψb have the shortest possible support.

Lemma. Let φ be defined as above. If
ψ ∈ span {φ (2 · −k) , k ∈ Z} and ψ has one vanishing moment,
then the length of the support of ψ is at least two. Similarly, the
boundary wavelet ψb has the shortest possible support among all
boundary wavelets with one vanishing moment generated from
scaling functions ψ and ψb.



For j ≥ 2 and x ∈ [0, 1] we define

ψj ,k(x) = 2j/2ψ(2jx − k + 2), k = 2, ..., 2j − 1,

ψj ,1(x) = 2j/2ψb(2jx), ψj ,2j (x) = −2j/2ψb(2j(1− x)).

We denote the index sets by

Ij =
{
k ∈ Z : 1 ≤ k ≤ 2j

}
.

We define

Φj = {φj ,k , k ∈ Ij} , Ψj = {ψj ,k , k ∈ Ij} ,

and

Ψ = Φ2 ∪
∞⋃
j=2

Ψj , Ψs = Φj0 ∪
j0+s−1⋃
j=j0

Ψj , j0 = 2.



We use the isotropic approach for the construction of a wavelet
basis Ψ2D on Ω2 = (0, 1)2 .

Figure: Scaling function φ⊗ φ (upper left) and wavelets φ⊗ ψ (upper
right), ψ ⊗ φ (lower left), and ψ ⊗ ψ (lower right).



Let |·|H1
0 (0,1) denotes the H1

0 (0, 1)–seminorm, i.e.

|f |H1
0 (0,1) =

√√√√√ 1∫
0

(f ′ (x))2 dx .

Theorem. The set Ψ when normalized with respect to the
H1-seminorm, i.e. the set{
φ2,k/ |φ2,k |H1

0 (0,1) , k ∈ I2

}
∪
{
ψj ,k/ |ψj ,k |H1

0 (0,1) , j ≥ 2, k ∈ Ij
}
,

is a Riesz basis of H1
0 (0, 1).

Theorem. The set Ψ2D normalized with respect to the

H1–seminorm is a Riesz basis of H1
0

(
(0, 1)2

)
.



Quantitative properties

We present the condition numbers of the stiffness matrices for the
Helmholtz equation

− ε∆u + au = f on Ωd , u = 0 on ∂Ωd ,

where ∆ is the Laplace operator, ε and a are positive constants.
We also study the case ε = 1 and a = 0, i.e. the Poisson equation,
and the case ε = 0 and a = 1.

An advantage of discretizing elliptic equations using a wavelet
basis is that the discrete system can be simply preconditioned by a
diagonal preconditioner [Dahmen, Kunoth, 1992].



Let Ψs be a wavelet basis with s levels of wavelets. We define

As = ε 〈∇Ψs ,∇Ψs〉+a 〈Ψs ,Ψs〉 , us = (us)T Ψs , fs = 〈f ,Ψs〉 .

Let Ds be a matrix of diagonal elements of the matrix As , i.e.
(Ds)λ,µ = (As)λ,µ δλ,µ. We set

Ãs = (Ds)−1/2 As (Ds)−1/2 , ũs = (Ds)1/2 us , f̃s = (Ds)−1/2 fs

and we obtain the preconditioned finite-dimensional system

Ãs ũs = f̃s .

The matrix Ãs is symmetric and positive definite and the condition
numbers are uniformly bounded, i.e.

cond Ãs ≤ C ,

where C is a constant independent on s.

The condition numbers of the stiffness matrices Ãs correspond to
the squares of the condition numbers of Ψs with respect to the
H1-seminorm.



Table: The condition numbers of the stiffness matrices Ãs of the size
N ×N corresponding to multiscale wavelet bases with s levels of wavelets
for the one-dimensional and the two-dimensional Poisson equation.

1D 2D

s N λmin λmax condÃs N λmin λmax condÃs

1 8 0.50 1.38 2.77 64 0.25 1.88 7.5

2 16 0.50 1.41 2.83 256 0.19 2.08 11.1

3 32 0.50 1.42 2.83 1 024 0.16 2.17 13.7

4 64 0.50 1.42 2.84 4 096 0.14 2.20 15.4

5 128 0.50 1.42 2.84 16 384 0.13 2.22 16.6

6 256 0.50 1.42 2.84 65 536 0.13 2.23 17.4

7 512 0.50 1.42 2.84 262 144 0.12 2.23 17.9

8 1024 0.50 1.42 2.84 1 048 576 0.12 2.23 18.3



Table: The condition numbers of the stiffness matrices Ãs of the size
N ×N corresponding to multiscale wavelet bases with s levels of wavelets
for the three-dimensional Poisson equation.

s N λmin λmax condÃs

1 512 0.15 3.23 47.4

2 4096 0.04 3.69 85.0

3 32768 0.03 3.83 113.8

4 262144 0.03 3.87 132.9

5 2097152 0.03 3.89 145.3



Table: The condition numbers of the stiffness matrices Ãs of the size
65536× 65536 for several choices of ε and a.

ε a CF2 CF3 CF ort
2 CF ort

3 CQ D2 D3

1000 1 17.4 16.3 17.1 16.4 62.0 116.3 98.4

1 0 17.4 16.7 17.1 16.4 62.0 116.3 98.4

1 1 17.4 16.7 17.1 16.4 62.0 116.6 98.5

10−3 1 72.1 35.9 35.6 22.5 61.1 328.1 139.2

10−6 1 746.0 577.0 425.7 287.6 46.3 1878.0 1115.4

0 1 872.6 687.4 511.0 351.5 46.4 2034.6 1251.4

CFj0 - the constructed basis with the coarsest level j0, CF ort
j0

- the
constructed basis with orthogonalization of scaling functions on
the coarsest level, CQ - Chui-Quak semiorthogonal spline wavelets,
Dj0 - Dijkema spline wavelets with the coarsest level j0
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Figure: The condition numbers of the matrices Ãs , s = J − j0 + 1, for the
Helmholtz equation with parameters ε = 1, a = 0, and ε = 0, a = 1. The
parameter J denotes the finest level and j0 denotes the coarsest level.
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Figure: The condition numbers of the matrices Ãs , s = J − j0 + 1, for
ε = 1, a = 0 and two-dimensional wavelet bases constructed using an
isotropic approach and an anisotropic approach. The parameter J
denotes the finest level and j0 denotes the coarsest level.



Multilevel Galerkin method

We consider the Helmholz equation for Ω2, ε = 1 and a = 0. The
right-hand side f is such that the solution u is given by

u (x , y) = v (x) v (y) , v (x) = x
(
1− e50x−50

)
.

We discretize the equation using the Galerkin method with the
constructed wavelet basis and we obtain discrete problem
Ãs ũs = f̃s . We solve it by conjugate gradient method using a
simple multilevel approach.

1. Compute Ãs and f̃s , choose v0 of the length 42.

2. For j = 0, . . . , s find the solution ũj of the system Ãj ũj = f̃j by
conjugate gradient method with initial vector vj defined for j ≥ 1
by

(vj) =

{
ũj−1, i = 1, . . . , kj ,

0, i = kj , . . . , kj+1,

where kj = 22(j+1).



Let us be an approximate solution obtained by multilevel Galerkin
method with s levels of wavelets.
Theorem: If we use the criterion for terminating iterations
‖rs‖2 ≤ C2−2s , where rs := Ãs ũs − f̃s , then

‖u − us‖ ≤ C2−3s , ‖u − us‖H1(Ωd ) ≤ C2−2s .

For the given number of levels s we used the criterion
‖rj‖2 ≤ 10−42−2s , j = 0, . . . , s, for terminating iterations in each
level.
We denote the number of iterations on the level j as Mj . One CG
iteration can be performed with complexity of the order O (N),
where N × N is the size of the matrix. Therefore the number of
operations needed to compute one CG iteration on the level j
requires about one quarter of operations needed to compute one
CG iteration on the level j + 1, we compute the total number of
equivalent iterations by

M =
s∑

j=0

Mj

4s−j
.



We compute experimental rates of convergence r2 and r∞ as

r2 =
log (‖us−1 − u‖ / ‖us − u‖)

log 2
,

r∞ =
log (‖us−1 − u‖∞ / ‖us − u‖∞)

log 2
.

We present also the wall clock time. It includes the computation of
the right-hand side, the system matrix, iterations and evaluation of
the solution on the grid with the step size 2−j0−s , where j0 is the
coarsest level.



Table: Number of iterations, error estimates, and computational time for
multilevel conjugate gradient method.

s N M ‖us − u‖∞ r∞ ‖us − u‖ r2 time [s]

1 64 18.50 3.19e-1 4.54e-2 0.04

2 256 21.63 1.32e-1 1.27 1.26e-3 5.17 0.05

3 1 024 23.66 2.60e-2 2.34 2.02e-3 2.64 0.06

4 4 096 23.00 2.91e-3 3.16 2.45e-4 3.04 0.09

5 16 384 20.89 4.06e-4 2.84 2.89e-5 3.08 0.16

6 65 536 18.37 5.35e-5 2.92 3.41e-6 3.08 0.30

7 262 144 15.68 6.82e-6 2.97 4.23e-7 3.01 0.99

8 1 048 576 13.02 8.63e-7 2.98 5.28e-8 3.00 3.89

9 4 194 304 10.35 1.08e-7 3.00 6.59e-9 3.00 14.87

10 16 777 216 8.85 1.41e-8 2.94 8.25e-10 3.00 58.12



Table: Error estimates for multilevel conjugate gradient method.

CF Primbs, Dijkema Chui and Quak

s ‖us − u‖∞ ‖us − u‖∞ ‖us − u‖∞
1 3.19e-1 3.19e-1 3.19e-1

2 1.32e-1 1.32e-1 1.32e-1

3 2.60e-2 2.60e-2 2.60e-2

4 2.91e-3 2.91e-3 2.91e-3

5 4.06e-4 4.06e-4 4.06e-4

6 5.35e-5 5.35e-5 5.35e-5

7 6.82e-6 6.84e-6 6.84e-6

8 8.63e-7 8.64e-7 8.64e-7

9 1.08e-7 1.09e-7 1.08e-7

10 1.41e-8 1.38e-8 1.36e-8



Table: Number of iterations and computational time for multilevel
conjugate gradient method.

CF Primbs, Dijkema Chui and Quak

s M time [s] M time [s] M time [s]

1 18.50 0.04 27.50 0.04 13.00 0.03

2 21.63 0.05 48.88 0.07 30.25 0.05

3 23.66 0.06 59.22 0.11 35.06 0.07

4 23.00 0.09 59.38 0.19 33.82 0.14

5 20.89 0.16 50.76 0.33 30.30 0.21

6 18.37 0.30 39.44 0.68 25.32 0.41

7 15.68 0.99 29.92 2.20 20.74 1.39

8 13.02 3.89 21.50 9.53 17.87 5.55

9 10.35 14.87 17.66 47.39 14.82 21.62

10 8.85 58.12 15.79 248.41 12.36 83.54



References
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