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Introduction

• We focus on the numerical solution of Fredholm linear integral
equations and second-order integro-differential equations using the
wavelet-Galerkin method.

• We construct appropriate wavelet basis (on the interval and
hyperrectangle) for this problem (satisfying required properties such
as Riesz basis property, smoothness, vanishing moments, boundary
conditions).

• We present (sketch of) the proof of the Riesz basis property.

• We show that discretization matrices have uniformly bounded
condition numbers and that they can be approximated by sparse
matrices.

• We provide numerical examples and compare the results with the
Galerkin method using other wavelet bases and other methods.
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Advantages of wavelet methods

• Discretization matrices can be approximated by sparse matrices,
while most of the standard methods (FD, FEM, Galerkin with
B-splines, collocation method, quadrature method) lead to full
matrices.

• The condition numbers of the discretization matrices are uniformly
bounded. This implies that the number of iterations needed to
resolve a discrete problem with a desired accuracy is uniformly
bounded.

• The convergence of the wavelet-Galerkin method is of high order if
high-order spline wavelets are used. Order of convergence in the
L2-norm for quadratic spline wavelet basis is O

(
h3
)
, where h is the

step of the method.

• The wavelet-Galerkin method with the constructed quadratic-spline
wavelet basis was more efficient than this method with other
quadratic-spline bases.
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Notation
Let Ω = (a1, b1)× (a2, b2)× . . .× (ad , bd) , i.e. Ω is a hyperrectangle.

Let L2 (Ω) be the space of real-valued square-integrable functions on Ω
equipped with

〈f , g〉 =

∫
Ω

f (x) g (x) dx , ‖f ‖ =
√
〈f , f 〉.

Let H1 (Ω) be the Sobolev space, i.e. the space of all functions from
L2 (Ω) for which their first-order weak derivatives also belong to L2 (Ω),
which is equipped with

〈f , g〉H1 =
d∑

i=1

〈
∂f

∂xi
,
∂g

∂xi

〉
+ 〈f , g〉 ,

and

‖f ‖H1 =
√
〈f , f 〉H1 , |f |H1 =

√√√√ d∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥2

.
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Let H1
0 be the closure in H1 (Ω) of the set of all functions f such that

supp f ⊂ Ω, f is continuous on Ω and f has continuous first order
derivatives in Ω. The set of all m-times continuously differentiable
functions on Ω is denoted as Cm

(
Ω
)
.

Let K ∈ L2 (Ω× Ω) and let K : L2 (Ω)→ L2 (Ω) be an integral operator
given by

(Ky) (t) =

∫
Ω

K (t, x) y (x) dx .

We denote ∆y = ∂2y
∂x2

1
+ . . .+ ∂2y

∂x2
d

.

Our aim is to find a solution y of the equation

Ay := −ε∆y + py +Ky = f on Ω,

where ε ≥ 0 is a constant.

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Two cases

1. We assume that ε = 0, i.e. our aim is to find a solution y ∈ L2 (Ω) of
the linear integral equation

p (t) y (t) +

∫
Ω

K (t, x) y (x) dx = f (t) , t ∈ Ω.

2. We assume that ε > 0 and our aim is to find a solution y of the
second-order integro-differential equation

− ε∆y (t) + p (t) y (t) +

∫
Ω

K (t, x) y (x) dx = f (t) , t ∈ Ω,

satisfying homogeneous Dirichlet boundary conditions y = 0 on the
boundary of Ω.

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Variational formulation

Let V = L2 (Ω) for ε = 0 and V = H1
0 (Ω) for ε > 0, let ‖·‖V be a norm

in V, and let us define the bilinear form a : V × V → R as

a (u, v) = ε

d∑
i=1

〈
∂u

∂ti
,
∂v

∂ti

〉
+ 〈pu, v〉+ 〈Ku, v〉

for u, v ∈ V .

The variational formulation of the equation reads as: Find y ∈ V such
that

a (y , v) = 〈f , v〉 for all v ∈ V . (1)

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Assumptions

(A1) The function p satisfies p ∈ C
(
Ω
)
, and there exists a constant pmin

such that p (t) ≥ pmin > 0 for all t ∈ Ω.

(A2) The kernel K is smooth enough, i.e. K ∈ Cm
(
Ω× Ω

)
for some

m ∈ N.

(A3) The function f belongs to the space L2 (Ω).

(A4) The bilinear form a is coercive, which means that there exists a
constant α > 0 such that

a (u, u) ≥ α ‖u‖2
V for all u ∈ V .

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Existence and uniqueness

Theorem
If the assumptions (A1)–(A4) are satisfied, then there exists a unique
solution y ∈ V of Equation (1).

Proof.
Since ∣∣∣∣∫

Ω

u (x) dx

∣∣∣∣ ≤ C ‖u‖ , C =

√∫
Ω

1dx , (2)

we have

|a (u, v)| ≤ ε |u|H1 |v |H1 + pmax ‖u‖ ‖v‖+ KmaxC
2 ‖u‖ ‖v‖

≤ max(ε, pmax + KmaxC
2) ‖u‖V ‖v‖V ,

where pmax = maxx∈Ω p (x) and Kmax = maxx,t∈Ω |K (x , t)|. The
existence and uniqueness of the solution follows from the continuity and
coercivity of the bilinear form a by the Lax-Milgram lemma.

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Lemma
If (A1) and (A2) are satisfied and there exists a constant Kmin such that
K (x , t) ≥ Kmin for all x , t ∈ Ω and Kmin + pmin > 0, then a is coercive.

Proof.
If u ∈ L2 (Ω) and the assumptions of the lemma are satisfied, then

〈Ku, u〉 =

∫
Ω

∫
Ω

K (x , t) u (x) u (t) dxdt ≥ Kmin

(∫
Ω

u (x) dx

)2

.

If Kmin is positive then 〈Ku, u〉 ≥ 0. Due to (2), we have

〈Ku, u〉 ≥ KminC
2 ‖u‖2 for Kmin negative. If ε = 0, then

a (u, u) ≥ min
(
pmin, pmin + KminC

2
)
‖u‖2

.

If ε > 0, then

a (u, u) ≥ ε|u|2H1 + min
(
pmin, pmin + KminC

2
)
‖u‖2

≥ min
(
ε, pmin, pmin + KminC

2
)
‖u‖2

H1 .
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Wavelet basis

Let H be a Sobolev space or the L2–space, J be an index set and let
λ ∈ J take the form λ = (j , k). A wavelet basis of H is defined as a
family Ψ = {ψλ, λ ∈ J } such that

i) Ψ is a Riesz basis for H, i.e. the closure of the span of Ψ is H and
there exist constants c ,C ∈ (0,∞) such that

c ‖b‖2 ≤

∥∥∥∥∥∑
λ∈J

bλψλ

∥∥∥∥∥
H

≤ C ‖b‖2 ,

for all b = {bλ}λ∈J such that
∑
λ∈J

b2
λ <∞.

The number inf C/ sup c is called the condition number of Ψ.

ii) The functions are local in the sense that diam supp ψλ ≤ C2−|λ| for
all λ ∈ J , and at a given level j = |λ| the supports of only finitely
many wavelets overlap at any point x .
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Structure of the wavelet basis
A wavelet basis on the interval I has typically the hierarchical structure:

ΨI = ΦI
j0 ∪

∞⋃
j=j0

ΨI
j .

ΦI
j0

=
{
φIj0,k , k ∈ Ij0

}
- the set of scaling functions

ΨI
j =

{
ψI
j,k , k ∈ Jj

}
- the set of wavelets

Wavelets and scaling functions in the inner part of the interval are
typically translations and dilations of one or several functions. Wavelets
and scaling functions near the boundary are dilations of some special
functions called boundary scaling functions and wavelets.

We assume that wavelets have vanishing moments, i.e.∫
I

xmψI
j,k (x)dx = 0, m = 0, . . . L− 1, k ∈ Jj ,

where L ≥ 1 is dependent on the type of a wavelet.
Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Construction of wavelet basis

We define a scaling basis as a basis of quadratic B-splines. Let φ be a
quadratic B-spline defined on knots [0, 1, 2, 3]. It can be written explicitly
as

φ(x) =


x2

2 , x ∈ [0, 1],

−x2 + 3x − 3
2 , x ∈ [1, 2],

x2

2 − 3x + 9
2 , x ∈ [2, 3],

0, otherwise.

Let φb1 be a quadratic B-spline defined on knots [0, 0, 0, 1] and let φb2 be
a quadratic B-spline defined on knots [0, 0, 1, 2], i.e.

φb1(x) =

{
x2 − 2x + 1, x ∈ [0, 1],

0, otherwise,
φb2(x) =


− 3x2

2 + 2x , x ∈ [0, 1],
x2

2 − 2x + 2, x ∈ [1, 2],

0, otherwise.
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Figure: The scaling functions φb1, φb2, and φ.
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Scaling basis

For j ≥ 2 and x ∈ [0, 1] we set

φj,k(x) = 2j/2φ(2jx − k + 3), k = 3, ..., 2j ,

φj,1(x) = 2j/2φb1(2jx), φj,2j+2(x) = 2j/2φb1(2j(1− x)),

φj,2(x) = 2j/2φb2(2jx), φj,2j+1(x) = 2j/2φb2(2j(1− x)).

We denote the index sets by

Ij =
{
k ∈ Z : 1 ≤ k ≤ 2j + 2

}
.

We define
Φj = {φj,k , k ∈ Ij} .

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Wavelets
We define a wavelet ψ and a boundary wavelet ψb as

ψ(x) = −1

4
φ(2x) +

3

4
φ(2x − 1)− 3

4
φ(2x − 2) +

1

4
φ(2x − 3)

ψb(x) = −φb1(2x) +
13φb2(2x)

12
− 37φ(2x)

72
+
φ(2x − 1)

8
.

Then, suppψ = [0, 3] and suppψb = [0, 2], i.e. the wavelets have the
shortest possible support.

0 1 2 3
-0.5

0

0.5

0 0.5 1 1.5 2

-1

-0.5

0

0.5 b

Figure: The wavelet ψ and the boundary wavelet ψb.
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Wavelet basis
Lemma. The wavelets ψ and ψb have three vanishing moments, i.e.∫ 3

0

xkψ(x)dx = 0,

∫ 2

0

xkψb(x)dx = 0, k = 0, 1, 2.

For j ≥ 2 and x ∈ [0, 1] we define

ψj,k(x) = 2j/2ψ(2jx − k + 2), k = 2, ..., 2j − 1,

ψj,1(x) = 2j/2ψb(2jx), ψj,2j (x) = 2j/2ψb(2j(1− x)).

We denote the index sets by Jj =
{
k ∈ Z : 1 ≤ k ≤ 2j

}
. We define

Ψj = {ψj,k , k ∈ Jj} ,

and

Ψ = Φ2 ∪
∞⋃
j=2

Ψj , Ψs
j0 = Φj0 ∪

j0−1+s⋃
j=j0

Ψj , j0 ≥ 2, s > 0.

The set Ψs
2 is a finite-dimensional subset of Ψ. In numerical experiments

we also use Ψs
3.
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Theorem. The set Ψ is a Riesz basis of the space L2 (0, 1).

Corollary. The set Φj0 ∪
⋃∞

j=j0
Ψj with the coarsest level j0 > 2 is also a

Riesz basis of the space L2 (0, 1).

Proof. The proof is long and technical. It is based on the analysis of the
eigenvalues of the Gram matrices

〈
Ψs

j0
,Ψs

j0

〉
, because Ψ is a Riesz basis

of L2 (0, 1) if and only if there exist constants c and C such that

0 < c < λmin

〈
Ψs

j0 ,Ψ
s
j0

〉
< λmax

〈
Ψs

j0 ,Ψ
s
j0

〉
< C <∞.
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Adaptation to homogeneous Dirichlet boundary conditions
Let φ, φb2, and ψ be defined as above and let the boundary wavelet ψD

b

be given by

ψD
b (x) = −φb2(2x)

4
+

47φ(2x)

120
− 13φ(2x − 1)

40
+
φ(2x − 2)

10
.

Then, ψD
b has three vanishing moments and ψD

b (0) = 0.

0 1 2 3
-0.5

0

0.5

0 0.5 1 1.5 2 2.5

-0.2

-0.1

0

0.1

0.2

0.3

b

D

Figure: The wavelet ψ and the boundary wavelet ψD
b adapted to a

homogeneous Dirichlet boundary condition at point x = 0.
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Let φDj,k be defined by

φDj,k(x) = 2j/2φ(2jx − k + 2), k = 2, ..., 2j − 1,

φDj,1(x) = 2j/2φb2(2jx), φDj,2j (x) = 2j/2φb2(2j(1− x)).

For j ≥ 2 and x ∈ [0, 1] we define

ψD
j,k(x) = 2j/2ψ(2jx − k + 2), k = 2, ..., 2j − 1,

ψD
j,1(x) = 2j/2ψD

b (2jx), ψD
j,2j (x) = 2j/2ψD

b (2j(1− x)).

We define

ΦD
j =

{
φDj,k , k ∈ Jj

}
, ΨD

j =
{
ψD
j,k , k ∈ Jj

}
,

and

ΨD = ΦD
2 ∪

∞⋃
j=2

ΨD
j , Ψs,D

j0
= ΦD

j0 ∪
j0−1+s⋃
j=j0

ΨD
j , j0 ≥ 2.
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Theorem. The set ΨD is a Riesz basis of the space L2 (0, 1).

Corollary. Due to this theorem, the multiscale structure of the set ΨD ,
the smoothness of functions from ΨD , and the polynomial exactness of
ΨD , the set ΨD when normalized with respect to the H1-norm is the
Riesz basis of the space H1

0 (0, 1).
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Construction of multidimensional wavelet basis
We constructed a wavelet basis Ψ on the interval (0, 1).

The wavelet basis Ψi on the interval Ii = (ai , bi ) is obtained by a simple
linear transformation

ψi
j,k (x) = ψj,k

(
x − ai
bi − ai

)
, x ∈ [ai , bi ] ,

and similarly for the scaling functions.

We obtain the wavelet basis on the hyperrectangle
Ω = (a1, b1)× (a2, b2)× . . .× (ad , bd) , using an anisotropic tensor
product, i.e. the wavelet basis on Ω is given by Ψ = Ψ1 ⊗ . . .⊗Ψd . We
denote its subset containing s levels of wavelets starting from the
coarsest level j0 by Ψs

j0
.

Similarly, we construct the set ΨD and the finite-dimensional set Ψs,D
j0

.

Theorem. The set Ψ = {ψλ, λ ∈ J } is a Riesz basis of the space L2 (Ω)
and the set ΨD normalized in the H1-norm is a Riesz basis of the space
H1

0 (Ω).
Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Wavelet-Galerkin method

Let Ψk
j0

and Ψk,D
j0

be multiscale bases. For the fixed coarsest level j0 ≥ 2,
let us denote

Ψk =

 Ψk
j0
, ε = 0,

Ψk,D
j0
, ε > 0.

Thus Ψk is a wavelet basis that contains scaling functions at a coarsest
level j0 and k levels of wavelets. Then Xk = spanΨk are the
finite-dimensional subspaces of V that are nested, i.e. Xk ⊂ Xk+1,
k ∈ N, and

V =
∞⋃

k=j0−1

Xk .

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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The Galerkin formulation of (1) reads: Find yk ∈ Xk such that

a (yk , v) = 〈f , v〉 for all v ∈ Xk . (3)

Theorem. Let (A1)–(A4) be satisfied, h = 2−j0−k and y be a solution of
(1). Then, there exists a unique solution yk of Equation (3) and
‖yk − y‖V → 0. Moreover, if y ∈ H3 (Ω) ∩ V , then

‖yk − y‖ ≤ Ch3, ‖yk − y‖H1 ≤ Ch2

with a constant C that does not depend on h.

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Proof. The existence and uniqueness of the solution yk of the problem
(3) is a consequence of the Lax-Milgram lemma. Let A be defined as
above, Pk : V → Xk be a V -orthogonal projection, and

Ak := PkA|Xk
.

It is known that under the assumptions that A is invertible, there exists
C ∈ R such that ∥∥A−1

k PkA
∥∥ ≤ C ,

and that the denseness property is satisfied, it holds that ‖yk − y‖V → 0
and

‖yk − y‖V ≤ C ‖Pky − y‖V .

We verify these assumptions. As usual, C denotes a generic constant
that may take different values at different occurrences. The invertibility
of A and Ak and boundedness of the norm of A−1

k is a consequence of
the Lax-Milgram lemma.

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Moreover, due to the orthogonality of the projections Pk and
boundedness of A we have∥∥A−1

k

∥∥ ≤ 1

α
, ‖Pk‖ = 1, ‖A‖ ≤ β,

where α is a coercivity constant.
Hence, the error depends on the approximation properties of spline
spaces Xk , which are well-known. For y ∈ H3 (Ω) ∩ V , we have

‖Pky − y‖H1 ≤ Ch−1 ‖Pky − y‖ ≤ Ch2 ‖y‖H3 .

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Stability of the solution

Theorem. Let Pk : V → Xk be a V -orthogonal projection and Ak be
defined by

Ak := PkA|Xk
.

The above method is stable in the sense that there exist nonnegative
constants µ and ν, a positive constant δ and a positive integer q such
that for any k ≥ q, the operator Ak is invertible, and the perturbed
equation (Ak + Ek) ỹk = Pk f + gk has a unique solution ỹk ∈ Xk for any
gk ∈ Xk and any bounded linear operator Ek : Xk → Xk , with ‖Ek‖ < δ,
and ỹk satisfies

‖ỹk − yk‖V ≤ µ ‖Ek‖ ‖yk‖V + ν ‖gk‖V .

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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From the above Theorem, the convergence rate depends on the chosen
discretization spaces and not directly on the chosen bases of these spaces.

Since the constructed basis generates the same spaces as quadratic
B-splines or other quadratic spline wavelets, it can be expected that the
error will be similar. The main difference is therefore in the sparsity of
the discretization matrices, the condition numbers of the matrices and
the number of iterations needed to resolve the problem with a desired
accuracy.

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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We write the function yk as

yk =
∑
ψλ∈Ψk

ckλψλ.

Let Gk and Kk be matrices with the entries

Gk
µ,λ = ε 〈ψλ, ψµ〉+ 〈pψλ, ψµ〉 , Kk

µ,λ = 〈Kψλ, ψµ〉 ,

for ψλ, ψµ ∈ Ψk . Let fk be a vector with entries

f kµ = 〈f , ψµ〉 , ψµ ∈ Ψk ,

and ck be the column vector of coefficients ckλ. We obtain the system

Akck = fk , where Ak = Gk + Kk .

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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We apply the standard Jacobi diagonal preconditioning. Let Dk be a
diagonal matrix with diagonal elements

Dk
λ,λ :=

√
Ak
λ,λ =

√
a (ψλ, ψλ).

We define the preconditioned system

Ãk c̃k = f̃k

with

Ãk =
(
Dk
)−1

Ak
(
Dk
)−1

, f̃k =
(
Dk
)−1

fk , c̃k = Dkck .

We solve this system by the method of generalized residuals (GMRES)
or, in the case where the system matrix is symmetric and positive
definite, we use the conjugate gradient method.
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Uniform boundedness of the condition numbers

Theorem. There exists a constant C such that

cond Ãk ≤ C

for all k ≥ 0.

Proof. The proof is quite long and technical, it is based on the continuity
and coercivity of the bilinear form a and the Riesz basis property of Ψ.

Wavelet-Galerkin Method for Integro-Differential Equations TU Liberec
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Compression of the discretization matrices
We study the structure of the matrices Gk and Kk . Let the size of these
matrices be N × N (with N dependent on k). The matrix Gk has
O (N lnN) nonzero entries and has a so-called finger-band pattern. For
ε = 0, p = 1, and the constructed wavelet basis, the pattern is displayed
below. For seven levels of wavelets the matrix has the size 514× 514 and
thus it has 264196 entries, but only 16294 of the entries are nonzero.

Figure: The sparsity pattern of the matrix Gk for seven levels of wavelets.
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Decay estimates

For the standard Galerkin method using B-splines, the matrix Kk is full.
However, it is known that for some classes of operators and some types
of bases, many entries of the matrix Kk are small and can be
thresholded. Consequently, the matrix Kk can be approximated with a
matrix that is sparse. [Beylkin et al. 1992]

The decay estimates of the entries of the matrix Kk are typically derived
for isotropic systems. We present the decay estimates for anisotropic
wavelet systems and a kernel K that is sufficiently smooth.

Theorem. Let ψλ, ψµ ∈ Ψk be wavelets with L = 3 vanishing moments
and let the assumption (A2) be fulfilled for m = 2L. Then,∣∣∣∣∣∣

∫
Ω

∫
Ω

K (x , t)ψλ (x)ψµ (t) dx dt

∣∣∣∣∣∣ ≤ C2−([λ]+[µ])(L+d/2),

with a constant C independent of λ and µ and [λ] is the level of ψλ.
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Proof. Let the centres of the supports of ψλ and ψµ be denoted by xλ
and tλ, respectively. For multi-index l = (l1, . . . , ld) ∈ Nd

0 , N0 = N ∪ {0},
and x = (x1, . . . , xd) ∈ Rd , we denote |l | = l1 + . . .+ ld , l! = l1! . . . ld !,
and x l = x l11 . . . x

ld
d . Due to (A2) and the Taylor Theorem, there exists a

function P such that for fixed t the function P (x , t) is a polynomial with
respect to x of degree at most L− 1, and there exists a function Q such
that for fixed x the function Q (x , t) is a polynomial with respect to t of
degree at most L− 1 such that

K (x , t) = P (x , t) + Q (x , t) +
∑
|l|=L

∑
|m|=L

Cl,m (x − xλ)l (t − tµ)m (4)

with

Cl,m =
1

l!m!

∂ l∂mK (ξ (x , t))

∂x l∂tm
(5)

and
ξ (x , t) = (xλ, tµ) + α ((x , t)− (xλ, tµ)) (6)

for some α ∈ [0, 1].
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Since Ψ has L vanishing moments, we have∫
Ω

∫
Ω

(P (x , t) + Q (x , t))ψλ (x)ψµ (t) dx dt = 0. (7)

Let us denote

Kµ,λ =

∫
Ω

∫
Ω

K (x , t)ψλ (x)ψµ (t) dx dt. (8)

If |l | = L then

|x − xλ|l ≤ C
d∏

i=1

2−|λi |li ≤ C2−L[λ] (9)

and ∫
Ω

|ψλ (x)| dx ≤ C2−|λ1|/2−...−|λd |/2 ≤ C2−[λ]d/2. (10)
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Hence combining (4), (7), (9), and (10), we have

|Kµ,λ| ≤
∑
|l|=L

∑
|m|=L

Cl,m

∫
Ω

∫
Ω

|x − xλ|l |t − tµ|m |ψλ (x)ψµ (t)| dx dt

≤ C2−L[λ]−L[µ]−[λ]d/2−[µ]d/2.
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Let Ãk be the matrix defined above. Due to derived decay estimates and
the local support of wavelets, many entries of the matrix Ãk are small
and they can be thresholded, and the matrix Ãk can be approximated by
sparse matrix Âk .

More precisely, let T be a chosen threshold and let Âk be defined as

Âk
m,l =


Ãk

m,l , if
∣∣∣Ãk

m,l

∣∣∣ > T ,

0, if
∣∣∣Ãk

m,l

∣∣∣ ≤ T .

Then, ∥∥∥Ãk − Âk
∥∥∥ ≤ max

m

∑
l

∣∣∣∣(Ãk − Âk
)
m,l

∣∣∣∣ ≤ Tnk ,

where nk × nk is the size of the matrix Ãk .
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Theorem. If c̃k is the solution of the system with the matrix Ãk , and ĉk

is the solution of the system with the matrix Âk and the same right-hand
side, and if

γ :=

∥∥∥∥(Ãk
)−1 (

Ãk − Âk
)∥∥∥∥ < 1,

then ∥∥c̃k − ĉk
∥∥

‖ĉk‖
≤ cond Ãk

1− γ

∥∥∥Ãk − Âk
∥∥∥∥∥∥Ãk

∥∥∥ ≤ Tnk cond Ãk

(1− γ)
∥∥∥Ãk

∥∥∥ .
Moreover, the condition numbers and the norms of the matrices Ãk are
uniformly bounded.
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Compression strategy.

Strategy 1.
In some applications where the left-hand side of the equation is fixed and
the equation is solved for various right-hand sides, the system matrix can
be computed, analysed and compressed only once as a preprocessing step
and then one can work with the compressed matrix.

Strategy 2. Another approach is to use the derived decay estimate
together with the known structure of the matrices Gk to compute only
significant entries of the matrix Ak .
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Algorithm.

1. Compute the significant entries of the matrix Ãk and the vector of
the right-hand side f̃k .

2. Solve the system Ãk c̃k = f̃k .

3. Compute the solution

yk =
∑
ψλ∈Ψk

ckλψλ,

where ckλ are elements of ck =
(
Dk
)−1

c̃k .
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Numerical examples - notation

e2 denotes the L2-norm of the error, i.e. ‖y − yk‖

N × N is the size of the system matrix

K denotes the finest level of a wavelet basis

NNZ is the number of nonzero entries of the system matrix

cond is the condition number of the system matrix

it is the number of iterations for the chosen iterative method

CR = NNZ/N2 is the compression ratio
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Methods and bases

B-spline denotes the standard quadratic B-spline basis.

Quadratic semiorthogonal wavelet basis constructed by Chui and Quak is
denoted as CQ.

Biorthogonal quadratic spline wavelet bases with k vanishing moments
are denoted as bior3.k.

The constructed wavelet bases are denoted as new .

Spline-Galerkin denotes the Galerkin method with quadratic B-splines.

Spline-collocation denotes the collocation method with quadratic
B-splines (with 2j uniform collocation nodes for level j).

Legendre-collocation denotes the collocation method with Legendre
polynomials and Gauss-Legendre nodes.

Quadrature method denotes the standard quadrature method using the
Simpson’s rule.
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Example 1. One-dimesional integral equation

We consider the integral equation

(2− t) y (t) +
1

π

1∫
0

sin (t − x) y (x) dx = f (t) , t ∈ (0, 1) ,

with the oscillatory solution y (t) = sin (120πt).
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Figure: The sparsity pattern of the discretization matrix for Example 1.
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T = 10−8 T = 10−10 uncompressed

K N e2 NNZ e2 NNZ e2 NNZ

6 66 7.04e-1 1780 7.04e-1 1814 7.04e-1 4356

7 130 4.01e-1 3992 4.01e-1 4398 4.01e-1 16900

8 258 2.06e-2 9204 2.06e-2 10274 2.06e-2 66564

9 514 8.71e-4 21182 8.71e-4 22262 8.71e-4 264196

10 1026 2.02e-4 44052 2.02e-4 49346 2.02e-4 1052676

11 2050 2.37e-5 106396 2.37e-5 111744 2.37e-5 4202500

Table: L2 errors and the number of nonzero entries of compressed and
uncompressed matrices for Example 1.
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The L2 errors for the Galerkin method with B-splines were (to at least
three decimal digits) same as the errors for the new method, as was the
case for the Galerkin method with semiorthogonal wavelets and bior3.3
wavelets.

The results are also displayed for the spline collocation method, the
Legendre collocation method, and the quadrature method. All four
methods lead to matrices that are full and in the case of Legendre
collocation method they are also very badly conditioned.
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Spline-Galerkin Spline-collocation

N e2 cond N e2 cond

66 7.04e-1 7.64e0 66 1.00e0 4.12e0

130 4.01e-1 7.62e0 130 4.05e-1 4.17e0

258 2.06e-2 7.62e0 258 2.51e-2 4.20e0

514 8.71e-4 7.62e0 514 2.01e-3 4.22e0

1026 2.02e-4 7.61e0 1026 2.15e-4 4.23e0

2050 2.37e-5 7.61e0 2050 2.48e-5 4.23e0

Legendre-collocation Quadrature method

N e2 cond N e2 cond

66 1.80e1 1.74e18 67 9.82e-1 2.00e0

130 1.81e1 3.99e18 151 3.54e-1 2.00e0

258 1.51e1 2.69e18 259 1.32e-1 2.00e0

514 1.21e-13 5.18e19 515 6.63e-2 2.00e0

1026 1.61e-12 1.14e20 1027 8.69e-3 2.00e0

2050 3.39e-13 1.30e20 2051 2.18e-3 2.00e0

Table: The L2-norms of the errors of the solution of Equation (45). Galerkin
method correspond to the Galerkin method with bases new, B-spline basis, CQ,
and bior3.3.
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B-spline CQ bior3.3 new

K NNZ cond NNZ cond NNZ cond NNZ cond

3 100 7.9 100 8.4 100 7.9 100 8.8

4 324 7.7 312 7.9 316 25.1 286 8.9

5 1156 7.6 932 7.9 956 37.4 726 8.9

6 4356 7.6 2552 7.9 2604 53.0 1814 8.9

7 16900 7.6 6494 7.9 6628 64.3 4398 8.9

8 66564 7.6 14002 7.9 16012 75.0 10274 8.9

9 264196 7.6 31524 7.9 34060 84.0 22262 8.9

10 1052676 7.6 70410 7.9 75380 92.0 49346 8.9

11 4202500 7.6 162190 7.9 168386 98.9 111744 8.9

Table: The number of nonzero entries and the condition numbers of
compressed matrices with threshold 10−10 for various bases for Example 1.
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In the table, the number of nonzero entries and the condition numbers of
the compressed matrices with the threshold T = 10−10 are listed for
various piecewise quadratic bases. We also tested biorthogonal quadratic
spline wavelet bases with 5 and 7 vanishing moments, but the results
were significantly worse than for bases listed in the table both with
respect to the number of nonzero entries and the condition number of
the compressed discretization matrix.

The number of nonzero entries of the system matrix is the smallest for
the new basis.
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Example 2. Two-dimensional integral equation
We consider Ω = (0, 1)2 and the equation

p (t1, t2) y (t1, t2) +

∫∫
Ω

K (x1, x2) y (x1, x2) dx1dx2 = f (t1, t2) ,

where

p (t1, t2) = (t1 + 0.1)2 (1.1 + sin 10πt2) ,K (x1, x2) = (x1 sin x2 + 1) ,

(t1, t2) ∈ Ω, and the solution is y (t1, t2) = t1 cos (50πt2). We present
the results for the basis ΨK−3

3 , because they were slightly better than
then results for the basis ΨK−2

2 .

We solve the resulting system by the GMRES method. The results for
bases CQ and new are presented. Since the Galerkin method with
B-splines, the spline-collocation method, the Legendre-collocation
method and the quadrature method lead to full matrices, we do not use
them for this problem. The Galerkin method with bior3.3 wavelets leads
to badly conditioned matrices and the GMRES method stopped after 500
iterations without reaching the desired residual.
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CQ new

N e2 it CR e2 it CR

1156 4.10e-1 43(9) 2.67e-1 4.10e-1 46(3) 1.17e-1

4356 1.06e-1 42(7) 1.31e-1 1.06e-1 35(7) 8.23e-2

16900 6.12e-3 43(2) 4.82e-2 6.12e-3 35(1) 3.15e-2

66564 5.95e-4 43(2) 1.36e-2 5.95e-4 34(1) 9.43e-3

264196 6.70e-5 43(2) 3.25e-3 6.70e-5 34(10) 2.44e-3

Table: The compression ratios for T = 10−8, the number of outer and inner
GMRES iterations and the L2 errors for Example 2.
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Example 3. One-dimensional integro-differential equation I.

We use the Galerkin method with the basis ΨK−2,D
2 for the numerical

solution of the integro-differential equation

− y ′′ (t) + y (t)− 1

2

1∫
0

sin (πx + πt) y (x) dx = f (t) , t ∈ (0, 1) ,

with the boundary conditions y (0) = y (1) = 0. The right-hand side f is
such that the solution is y (t) = sin (40πt). We use the threshold
T = 10−10 for matrix compression. Since the CQ basis can not be
adapted to boundary conditions while preserving both semiorthogonality
and the number of vanishing moments, and boundary adapted bior3.5
wavelets led to better results than boundary adapted bior3.3 wavelets, we
present in Table 5 the results for the Galerkin method with bases bior3.5
and new.
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bior3.5 new

N e2 cond CR e2 cond CR

64 7.19e-2 13.03 6.34e-1 7.19e-2 10.77 3.94e-1

128 4.97e-3 13.16 4.00e-1 4.97e-3 10.86 1.98e-1

256 5.15e-4 13.20 2.32e-1 5.15e-4 10.90 9.96e-2

512 6.12e-5 13.23 1.28e-1 6.12e-5 10.93 5.05e-2

1024 7.53e-6 13.23 6.77e-2 7.53e-6 10.95 2.56e-2

2048 9.03e-7 13.23 3.51e-2 9.03e-7 10.96 1.29e-2

Table: The compression ratios, L2 errors and the condition numbers for
Example 3.
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For these methods the matrices were full and badly conditioned.

Spline-Galerkin Spline-collocation

N e2 cond e2 cond

64 7.19e-2 5.65e2 1.22e-1 1.51e3

128 4.97e-3 2.26e3 2.84e-2 6.03e3

256 5.15e-4 9.05e3 7.10e-3 2.41e4

512 6.12e-5 3.62e4 1.77e-3 9.65e4

1024 7.72e-6 1.44e5 4.44e-4 3.86e5

Table: The condition numbers and L2 errors for Example 3.
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Example 4. One-dimensional integro-differential
equation II.

We solve the integro-differential equation

− y ′′ (t) + 2y (t)−
1∫

0

(x − t) y (x) dx = f (t) , t ∈ (0, 1) ,

with the boundary conditions y (0) = y (1) = 0. The right-hand side f is
such that the solution is y (t) = (1− t)

(
1− e10t

)
. We use the basis

ΨK−2,D
2 and the threshold T = 10−10. We use the same methods as in

the previous example.
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bior3.5 new

N e2 cond CR e2 cond CR

64 2.78e-2 12.1 6.08e-1 2.78e-2 10.8 3.10e-1

128 3.45e-3 12.1 3.94e-1 3.45e-3 10.8 1.74e-1

256 4.31e-4 12.2 2.31e-1 4.31e-4 10.9 9.35e-2

512 5.38e-5 12.2 1.27e-1 5.38e-5 10.9 4.90e-2

1024 6.71e-6 12.2 6.76e-2 6.71e-6 10.9 2.52e-2

2048 8.08e-7 12.2 3.51e-2 8.08e-7 10.9 1.28e-2

Table: The compression ratios, L2 errors and the condition numbers for
Example 4.
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Spline-Galerkin Spline-collocation

N e2 cond e2 cond

64 2.78e-2 5.18e2 2.00e0 1.38e3

128 3.45e-3 2.07e3 5.01e-1 5.52e3

256 4.31e-4 8.28e3 1.25e-1 2.21e4

512 5.38e-5 3.31e4 3.14e-2 8.33e4

1024 6.71e-6 1.33e5 7.84e-3 3.53e5

Table: The condition numbers and L2 errors for Example 4.
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Example 5. Two-dimesional integro-differential equation

For Ω = (0, 1)2 we consider the equation

− ε∆y (t1, t2) + y (t1, t2) +

∫∫
Ω

ex1+t1x2t2

2
y (x1, x2) = f (t1, t2) ,

with the homogeneous Dirichlet boundary conditions, ε = 10−5, and with
the solution y (t1, t2) = t1t2

(
1− e50t1−50

) (
1− e50t2−50

)
.

We use ΨK−3,D
3 basis and the threshold T = 10−10. For this equation

the system matrix is symmetric and positive definite and thus we use the
conjugate gradient method. The iterations stop if the relative residual is
less than 10−10.
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bior3.5 new

N e2 it CR e2 it CR

1024 1.97e-3 300 6.23e-1 1.97e-3 104 2.06e-1

4096 2.41e-4 419 3.60e-1 2.41e-4 134 8.16e-2

16384 2.88e-5 488 1.45e-1 2.88e-5 157 3.00e-2

65536 3.54e-6 514 4.85e-2 3.54e-6 171 8.24e-3

262144 4.89e-7 520 1.43e-2 4.89e-7 176 2.31e-3

Table: The compression ratios for T = 10−9, the number conjugate gradient
iterations and L2 errors for Example 5.
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Conclusions

I We constructed quadratic spline-wavelet bases with short supports
and with three vanishing moments for the spaces L2 (Ω) and H1

0 (Ω),
where Ω is the hyperrectangle.

I We used the Galerkin method with the constructed bases for solving
integral and integro-differential equations. The method is
convergent and stable and the discretization matrices have uniformly
bounded condition numbers.

I Based on the decay estimates of the elements of discretization
matrices, the compression strategy was proposed.

I We presented several numerical examples and compared the results
with the Galerkin method with other quadratic spline wavelet bases
and with other methods.

I The errors for small enough thresholds were similar as the error for
full matrices, but the number of nonzero entries of the compressed
matrices was significantly smaller than for full matrices and thus we
were able to solve large systems efficiently.
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