Matematika 2 - priklady k procviceni

Vaclav Finék

26. ledna 2026

1 Nekonecné rady

Priklad 1.1 Urdete

Priklad 1.2 Urcete

Priklad 1.3 Urcete

Priklad 1.4 Urcete

Priklad 1.5 Urcete

Priklad 1.6 Urcete
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Priklad 1.8 Urcete

Priklad 1.9 Urcete
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Priklad 1.12

Priklad 1.13
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2 Limity

Priklad 2.1 Spoctéte limitu:
Priklad 2.2 Spoctéte limitu:
Priklad 2.3 Spoctéte limitu:
Priklad 2.4 Spoctéte limitu:
Priklad 2.5 Spoctéte limitu:
Priklad 2.6 Spoctéte limitu:
Priklad 2.7 Spoctéte limitu:
Priklad 2.8 Spoctéte limitu:
Priklad 2.9 Spoctéte limitu:

Priklad 2.10 Spoctéte limitu

Priklad 2.11 Spoctete limitu:

Priklad 2.12 Spoctete limitu:

Priklad 2.13 Spoctete limitu:

Priklad 2.14 Spoctete limitu:

Priklad 2.15 Spoctete limitu:

Priklad 2.16 Spoctete limitu:

Priklad 2.17 Spoctete limitu:

Priklad 2.18 Spoctete limitu:

Priklad 2.19 Spoctete limitu:
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3 Tayloriv rozvoj

Priklad 3.1 Urcete Tayloriv polynom druhého stupné se stredem v bodé [0,1] pro funkci

i 1
f(z,y) = ™" + arccotg(2z) + M (1 + g +x+ 3 (4x2 +2z(y — 1)))
)
Priklad 3.2 Urcete Tayloriv polynom druhého stupné se stredem v bodé [1,0] pro funkci
t
Flz,y) = 27V + arctg(2y) + g(fy). (14 3y + In(2)y(z — 1))

Priklad 3.3 Urcete Tayloriv polynom druhého stupné se stredem v bodé [1,0] pro funkci
T

f(z,y) =logy(x — zy) + arctg(z — 2y — 1) + y cotg (z - 2) ,

(r—1)2 2+ (1n2)_1y2>

<(1+(1n2)1)(x—1)—(2—|—(1n2)1)y—(1n2)1 5 5 5

Priklad 3.4 Urcete Tayloriv polynom druhého stupné se stredem v bodé [0,1] pro funkci
5 -1
f(z,y) = 47 + arctg(2z) + 21 (1 + ?ﬂf + (In4)2? — SE(Z/2)>
Yy

Priklad 3.5 Urcete Tayloriv polynom druhého stupné se stredem v bodé [0,1] pro funkci

f(z,y) =1In <§ji—i> + arcsin(3z) + sinx‘ (6x —3x(y — 1))

Priklad 3.6 Urcete Tayloriv polynom druhého stupné se stredem v bodé [0,1] pro funkci

f(x,y) = 25@Y) 4y arcsin(2z) + 2£
Yy
In?2
<1+ (Z+ln2>x+ ( n2 )q;?—i— (24—1112)1;(3/—1))

Piiklad 3.7 Urcete Tayloriv polynom druhého stupné se stredem v bodé [0,1] pro funkci

f(z,y) =1In (T) + 25 |y aresin(2). (1 + In(2)2® + da(y — 1))
y+x
Piiklad 3.8 Urcete Tayloriv polynom prvého stupné se stredem v bodé [1,1,0] pro funkci
flz,y,2) = (x —yz)™ + 2 zarcsin(2zy — 2). (2+3@x—1)+2y—1)—2)
Piiklad 3.9 Urcete Tayloriv polynom druhého stupné se stredem v bodé [2,0] pro funkci
25 31
fla,y) = €Y + arctg(2y) + % (1 + Y 8y + g(x — 2)9)

Priklad 3.10 Urcete Tayloriv polynom druhého stupné se stredem v bodé [1,1] pro funkci
xy—1 2 2 COSY
flag) = e Hin(a? 4 y? — 1)+ L

(z—1)*

(y—1)?
5 (—1 — cos 1))

<1+cosl+(3—cosl)(m—1)—|—(3—sin1)(y—1)—|— (—1+2cosl)

+(=2+sinl)(y—1)(x—1)+

Piiklad 3.11 Urcete Tayloriv polynom tretiho stupné se stiedem v bodé [0,0] pro funkci
f(z,y) = 2 + 32%y + 3a* + 5°. (xS + 3%y + 3y + yS)



Piiklad 3.12 Urcete Tayloriv polynom druhého stupné se stredem v bodé [1,—1]| pro funkci
f(z,y) = 2* + 2%y — e¥* —Inx.

(—6’_1 + (e_l — 1) (r—1)+ (1 - 6_1) (y+1)+ (z— 1) (1 - 6_1)

2 ( ))
o1 y+1)?

+2(y + (@ — 1) — >

Piiklad 3.13 Urcete Tayloriv polynom druhého stupné se stredem v bodé [—1,1] pro funkci
flz,y) =2 + 2y — e —Iny.
(x+ 1)

<—e—|—(e—1)(x+1)+(—3—e)(y—1)+ (2—¢)

+(2+2e)(y—D(z+1)+ (-1 — e)(?/;lf)

Piiklad 3.14 Urcete Tayloriv polynom druhého stupné se stredem v bodé [0,2] pro funkci
3
flz,y) = e + arctg(—2z) + 2—x
)
11 29
(1 + T + 827 + g(y — 2).:1:)
Priklad 3.15 Urcete Tayloriv polynom tretiho stupné se stredem v bodé [1,0] pro funkci
f(z,y) = 2* 4+ 32%y + 3zy® + o°.
(143(x—1) +3y +3(x — 1)* + 3y> + 6(x — y+

(x = 1) +¢° +3(e — )y’ +3(x — 1))

Piiklad 3.16 Urcete Tayloriv polynom druhého stupné se stredem v bodé [0,1] pro funkci
flx,y) = ™) 1 arctg(22) + T
Y
2
(1 + 4x + x2>

Piiklad 3.17 Urcete Tayloriv polynom druhého stupné se stredem v bodé [1,1] pro funkci

f(z,y) = e@=D=1 1 (y — 1)%arccotg(2z) + Y.
x

(2—(:6—1)+(y—1)+<x_21)2—(y_21)2—2(:c—1)(y—1)>

Piiklad 3.18 Urcete Tayloriv polynom druhého stupné se stredem v bodé [—1,0] pro funkci
. 2
f(x,y) = esm@Te+l L 4 1)Sarctg(2y) + il
x
(z+1)? ¥

<1—|—(:1:—|—1)—3y—|—

Piiklad 3.19 Urcete Tayloriv polynom druhého stupné se stredem v bodé [0, —1]| pro funkci

flz,y) = 259 4 22aresin(2y + 2) + 2£
Y

<1+ (—ln2— ;>$+(ln2)2:§+ <1n2— ;) x(y—i—l))



Piiklad 3.20 Urcete Tayloriv polynom druhého stupné se stredem v bodé [1,0] pro funkci

f(z,y) = 4@ 4y arcsin(2y) + 5ﬂ
T

<1+ (ln4+ ;) Y+ ((ln4)2—|—4) y; + <1n4— ;) y(x — 1)>

Piiklad 3.21 Urcete Tayloriv polynom druhého stupné se stredem v bodé [0,1] pro funkci

f(z,y) = 8@ 4 yarcsin(4z) + 43
Y

<1+ <ln8+147> T + (ln8)23;2—|— (ln8+ 145> x(y — 1))



4 Implicitni funkce

Priklad 4.1 Vysetrete lokalni extrémy funkce y(x) pro krivku urcenou implicitné rovnici F(z,y) =
gyt —a? —y? =0
Vysledek:

Minimum: [0, 1], [\é? e +2\/§ ’ [ \é_ m
V2 1HV2| | V2 T+
e

27V 2
Prlklad 4. 2 Vysetrete lokdlni extrémy funkce y(x) pro krivku urcenou implicitné rovnici F(x,y) =
ot oyt — 222 — 22 = 0.

Vysledek:

Minimum: [0,v/2], [ —V1+v2|, [ —V1+v2|.
Magimum.: [0, —v/2], {1, VI+V2|, [—-1,V14+V2|.

Priklad 4.3 Vysetrete lokalni extrémy funkce y(x) pro krivku uréenou implicitné rovnici F(z,y) =
(y?* + 22)? + 292 — 222 = 0.
Vysledek:

e [ [
oo |21 1]

Priklad 4.4 Ke krivce implicitné urcené rovnici F(z,y) = 2? + 2zy + y*> — e**™% —3 = 0
napiste rovnici tecny v bodé [1,1] a ddle urcete, zda-li tato krivka lezi v okoli bodu [1,1] nad
tecnou nebo pod tecnou.

Mazimum: [0, —1], [

—1
Vysledek: y = ?(x — 1) + 1. Krivka lezi v okoli bodu [1,1] nad tecnou.

Priklad 4.5 Vysetrete lokalni extrémy funkce y(x) pro krivku uréenou implicitné rovnici F(x,y) =
y? 4+ 2% — 2yr — 22 — 4y = 0.

1
Vysledek: Minimum: {2, _6} .

Priklad 4.6 Vysetrete lokalni extrémy funkce y(x) pro krivku urcenou implicitné rovnici F(x,y) =
2% + 2% — 2yx — 5 — 4y = 0.

Vysledek: Minimum: [—1, —1] a mazimum: [5,5].

Priklad 4.7 Vysetrete lokdlni extrémy funkce y(x) pro krivku uréenou implicitné rovnici F(z,y) =
ot — 222+ 2 —1=0.

Vysledek:
Minimum: [0, 1], {1, —\/ﬂ , [—1, —\/5} )

Mazimum: [0, —1], [1, \/ﬂ , [—1, \/ﬂ .



Priklad 4.8 Ke krivce implicitné urcené rovnici F(z,y) = 2? + 2zy + y*> — 2™ 41 = 0
napiste rovnici tecny v bodé [—1,1] a ddle urcete, zda-li tato krivka lezi v okoli bodu [—1,1] nad
tecnou nebo pod tecnou.

Vysledek: y = —x. Krivka leZi v okoli bodu [—1, 1] na tecné.

Priklad 4.9 Ke krivce implicitné uréené rovnici F(z,y) = x* + 2xy +y* — 4 = 0 napiste rovnici
tecny v bodé [1,1] a ddle urcete, zda-li tato krivka lezi v okoli bodu [1,1] nad tecnou nebo pod
tecnou.

Vysledek: y = —z + 2. Krivka leZi v okoli bodu [1,1] pod tecnou.

Priklad 4.10 Najdéte lokalni extrémy implicitné zadané funkce y(x), kterd je resenim rovnice
F(x,y) =22% + y?> + 22y + 2y — 6 = 0.

Vysledek: Minimum: [3, —6] a mazimum: [—1,2].

Priklad 4.11 Najdéte lokalni extrémy implicitné zadané funkce y(x), kterd je resenim rovnice
F(z,y) =2*+y? + 6x + 2y = 0.

Vysledek: Minimum: {—3, —1-— \/E} a MaTimum: {—3, -1+ \/1—0] :

Priklad 4.12 Najdéte lokdlni extrémy implicitné zadané funkce x(y), kterd je resenim rovnice
F(z,y)=2*>+y? —4x + 2y = 0.

Vysledek: Minimum: [2 — /5, —1} a marimum: [2 + /5, —1} .

Priklad 4.13 Ke kiivce implicitné urcené rovnici F(z,y) = 2> — 2zy +y> —e** 2 +1 =0
napiste rovnici tecny v bodé [1,1] a ddle urcete, zda-li tato krivka lezi v okoli bodu [1,1] nad
tecnou nebo pod tecnou.

Vysledek: y = x. Krivka leZi v okoli bodu [1,1] na tecné.

Priklad 4.14 Ke krivce implicitné uréené rovnici F(z,y) = x* + 2oy + y* — ™ +1 =0
napiste rovnici tecny v bodé [1, —1] a ddle urcete, zda-li tato krivka leZi v okoli bodu [1, —1] nad
tecnou mebo pod tecnou.

Vysledek: y = —1. Krivka lezi v okoli bodu [1, —1] nad tecnou.

Priklad 4.15 Ke krivce implicitné urcené rovnici F(x,y) = 22* + 4y + y* + 3773Y = 0 napiste
rovnici tecny v bodé [—1,1] a ddle urcete, zda-li tato krivka lezi v okoli bodu [—1,1] nad tecnou
nebo pod tecnou.

(z+1) 44

Vysledek: y = +1,y"(-1) = 3 krivka tedy leZi pod tecnou.

Priklad 4.16 Ke krivce implicitné urcené rovnici F(z,y) = x* —3zy +y* 4+ 322~ = 0 napiste

rovnici tecny v bodé [1,1] a ddle urcete, zda-li tato krivka leZi v okoli bodu [1,1] nad tecnou nebo
pod tecnou.

Vysledek: y = 4z — 3, y"(1) = 205, krivka tedy leZi nad tecnou.



Priklad 4.17 Ke krivce implicitné urcené rovnici F(z,y) = 2z* — bay + 2y* + 32271 = 0
napiste rovnici tecny v bodé [1,1] a ddle urcete, zda-li tato krivka lezi v okoli bodu [1,1] nad
tecnou nebo pod tecnou.

Vysledek: y = —6z + 7, 3/ (1) = —1173, kr'ivka tedy leZi pod tecnou.

Priklad 4.18 Ke krivce implicitné urcené rovnici F(x,y) = 2x? — Sy + 2% + e ¥72 = 10
napiste rovnici tecny v bodé [1, —1] a ddle urcete, zda-li tato krivka lezi v okoli bodu [1, —1] nad
tecnou nebo pod tecnou.

1
Vysledek: y =z — 2, y'(1) = —5 krivka tedy leZi pod tecnou.



5 Aplikace parcialnich derivaci
Priklad 5.1 Napiste rovnici tecné roviny v bodé [—1,—1,0] k plose urcené rovnici F(z,y, z) =

8
arcsin(z® —y* — 2*) + 2%z + y* + V22 + 1+ ayz —2 =0. (—2(x +1)+ 3¢ = 0)

Piiklad 5.2 Necht f(z,y) = (22 —6y)** +In(—zy) a u = (—1,2). Vypocitejte smérovou derivaci
Y1 +41 1 —24(83%) — 1

87f(1,_1). 8 (1+4In8) + L9 (8%)

du V5 V5

Priklad 5.3 Necht f(z,y) = (y — 3z)**™! + arcsin(zy) a u = (1,1). Vypocitejte smérovou

derivact gi(o, 1). (—%)

Priklad 5.4 Pomoci transformace do noviyjch nezavisle proménnijch u = 2x + 3y a v = 2z — 3y

0? 40?
zjednoduste vinovou rovnici a;;(x, y) + 98;20(:1:,@ = 0. Predpoklddejte, Ze funkce f md vsechny
0? 0?
derivace druhého rdidu spojité. <8au“7;(u7 v) + 881)];(“’ v) = 0)

Piiklad 5.5 Do vjrazu (1 + 2°)%y"(z) + 2z(1 + 2*)y/(z) + y(z) = 0 zavedte novou nezdvislou

-7
proménnou t vztahem x =tgt, t € | —, 2) . Predpokladejte, Ze funkce y ma spojitou druhou

2

derivaci. (y"(t) +y(t) = 0)

s 7/ af af . 7/ i . v 7 x
Priklad 5.6 Vyraz :1:6— + yaf = 0 transformugjte do novych nezdvisle proménnych v = —,

T Y Y
0
v = y. Predpoklddejte, Ze funkce f md spojité parcidalni derivace. (vai(u, v) = 0)
Priklad 5.7 Pomoci transformace do novych nezdvisle proménnych u =2x +y av =2x —y
0? 0?
zjednoduste vinovou rovnici 8“§(x, y) + 48];@, y) = 0. Predpoklddejte, Ze funkce f md vsechny
x y
0? 0?

derivace druhého Tdadu spojité. <8au];(u, v) + 831}];(14, v) = 0)
Priklad 5.8 Napiste rovnici tecné roviny v bode [1,1,0] k plose urcené rovnici F(x,y,z) =
arcsin(x? — y? + 2%) + /(2292 — 1)0 + 2yz = 0. 4z —1)—-2(y—1)+2=0)
Priklad 5.9 Dokazte, Ze funkce f( ) L hovuj "82f+82f+

riklad 5. okazte, Ze funkce f(x,y,z2) = vyhovuje rovnici

’ . VaZ +y? 4 22 yrovdy Oxdx  Oydy

>
020z

. . 1 . L Pf L, P
Priklad 5.10 Dokazte, Ze funkce f(z,y) = vyhovuje rovnici —c =0

Yy — Ox0x dydy

Priklad 5.11 Napiste rovnici tecné roviny v bodé [—1,0, 1] k plose urcené rovnici F(x,y, z) =
arctg(—a? + y* + 22) + Vazdy = 0. 2@x+1)—y+2(z—1)=0)

10



Priklad 5.12 Pomoci transformace do novych nezavisle proménnyjch u = x + 2y a v =x — 2y

o? 102

zjednoduste vinovou rovnici a];(a:, y) + 48J;(:c, y) = 0. Predpokladejte, Ze funkce f md vsechny
i y

derivace druhého rddu spojité. (2%(@0, v) + 2%(% v) = 0)

Piiklad 5.13 Napiste rovnici tecné roviny v bodé [—1, —1,0] k plose urcené rovnici F(z,y, z) =
arccos(—x2 + y2 — 22) + xzy — :L’y2 +Vz+1+ayz —1— g =0.

3
<—(x+1)+y+1+2z:0)

Piiklad 5.14 Napiste rovnici tecné roviny v bodé [1,—1,0] k plose urcené rovnici F(x,y,z) =
arccos(—z% + y* — 2%) + 22y120 + 2 — Z=0.
2x—-1)+2y+1)+2=0)

Priklad 5.15 Napiste rovnici tecné roviny v bodé [1,1,0] k plose urcené rovnici F(x,y,z) =
arctg(z? — y? — 2%) + Va2ylz = 0.
2x—-1)—2(y—1)+2=0)

Piiklad 5.16 Napiste rovnici tecné roviny v bodé [1,0, —1] k plose urcené rovnici F(x,y, z) =
arctg(z? — y? — 2%) + Vadz2y = 0.
2x—-1)+y+2(z+1)=0)

Priklad 5.17 Napiste rovnici tecné roviny v bodé [1,1,0] k plose urcené rovnici F(x,y,z) =

arctg(z® — y? — 24) + Vry?z = 0.
Bx—1)—2(y—1)+2=0)

11



6 Extrémy funkci vice proménnych
Priklad 6.1 Urcete nejmensi a nejuétsi hodnotu funkce f(z,y) = x* — zy + y* na mnoziné M
urcené podminkou |x| + |y| < 1. Ddle ovérte, zda-li md funkce [ lokdlni extrémy.

Vysledek:
Absolutni minimum (i lokdlng): [0, 0].
Absolutni mazimum: [0, —1],[0,1],[—1,0], [1, 0].

Priklad 6.2 Urcete nejmensi a nejuétsi hodnotu funkce f(x,y) = x? — dxy + y* na mnoZinée M
urcené podminkou |x — 1| + |y — 1| < 1. Ddle ovérte, zda-li ma funkce f lokdlni extrémy.

Vysledek:
3 3}
272]°

Absolutni minimum:
Absolutni mazimum: [0, 1], [1,0].

Priklad 6.3 Urcete nejmensi a nejuétsi hodnotu funkce f(x,y) = 2* — 3zy + y* na mnoZiné M
tvorené trojihelnikem s vrcholy [1,1], [0, —1] a [=1,0]. Ddle ovérte, zda-li ma funkce f lokdlni
extrémy.

Vysledek:
Absolutni minimum.: [1

Absolutni mazimum: {1, —1} , [—1, 1} .
37 3 33

|, a na celé isecce y = —1 — x pro x € [—1,0].

Lokdlni minimum: [1,1].

Priklad 6.4 Urcete nejmensi a nejvétsi hodnotu funkce f(x,y) = 2° + 3zy + y> na mnoZiné M
tvotené trojihelnikem s vrcholy [—1,—1], [0,1] a [1,0]. Ddle ovérte, zda-li ma funkce f lokdlni

extrémy.
Vysledek:
1 -1 -11
iy s— N
solutnt minimum. | <, — 23
Absolutni mazimum: [—1,—1], a na celé tusecce y=1—x pro x € [0,1].
Lokdlni mazimum: [—1, —1].

Priklad 6.5 Najdcte lokdini extrémy funkce F(z,y, z) = 12 +2y* +32% — 22y +2y2+22 — 62+ 35.
Vysledek: Lokdlni minimum: [8,5, —2].

Priklad 6.6 Najdcte absolutni extrémy funkcee f(z,y, z) = 1+z+x+y? na mnoZiné x?+y*+2? <
4.

Vysledek:
Absolutni minimum: {—\/5, 0, —\/ﬂ .

Absolutni mazimum: 1 \/? 1 1 _\/? 1
* 27 27 2 ) 27 27 2 .

Priklad 6.7 Najdéte lokdlni extrémy funkce f(z,y) = 22* — 8xy + 4y? — 62 + 2y + 9.

Vysledek: Funkce nema lokdlni extrémy.
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Priklad 6.8 Najdéte absolutni extrémy funkce f(z,y) = 1+ x + y? na mnoZiné x> + 2y* < 4.
Vysledek:

Absolutni minimum: [—2,0] .

Absolutni maximum: [1, 3] ) [1,—\/3 :

Priklad 6.9 Najdcte lokdini extrémy funkce F(z,y, z) = —1?—2y?— 322+ 22y —2y2—22+62+35.

Vysledek: Lokdlni maximum: [8,5, —2].

2
Piiklad 6.10 Najdéte lokdlni extrémy: F(z,y, z) = 2y — 22 — y* — % + 322 — a°.

Vysledek: Lokdlni maximum: [2,1,4].

Ptiklad 6.11 Najdéte absolutni extrémy: f(x,y) = 1+ x +y na mnoZiné x* + 2x + y* < 0.

Vysledek:
. 1 1 , . 1 1
Absolutni minimum: [—1 — \/;, —\/;} a absolutni mazimum: |—1+ \/;, \/;} .

Priklad 6.12 Urcete nejmensi a nejuétsi hodnotu funkce f(x,y) = x* +y* na mnoZiné M dané
podminkami v > —1 —y*, =2 <y < 2,z < 1. Ddle ovérte, zda-li md funkce f(x,y) = 2* + y*
lokalni extrémy.

Vysledek:
Absolutni (i lokdlni) minimum: [0, 0].
Absolutni mazimum: [—5,2], [-5, —2].

Piiklad 6.13 Najdéte lokdlni extrémy funkce f(x,y) = 2° + 3zy + >
Vysledek: Lokdlni mazimum: [—1, —1].

Priklad 6.14 Najdéte absolutni extrémy funkce f(x,y) = x*—2x+y*—2 na mnoZiné r*+y? < 5.
Dale overte, zda-li md tato funkce lokdlni extrémy.

Vysledek: Absolutni (i lokdlni) minimum: [1,0]. a absolutni mazximum: [—\/5, O] :

Priklad 6.15 Najdéte lokdlni extrémy funkce f(x,y) = 2? — 2zy — y? — 42 + 9.

Vysledek: Nema lokdlni extrémy.

Ptiklad 6.16 Najdéte absolutni extrémy funkce f(x,y) = x? — 2xy — y*> — 42 + 9 na usecce
prochazejict body [0, —5], [2, 3].

Vysledek:

Absolutni minimum: [0, 5], [2,3].
Absolutni mazimum: [1,—1].

Ptiklad 6.17 Najdéte lokdlni extrémy funkce f(x,y) = 2? — 2zy — y? — 62 + 2y + 9.
Vysledek: Nema lokdlni extrémy.
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Priklad 6.18 Najdéte extrémy funkce f(x,y) = 2>+ 2xy+y* — 22+ 2y na kruinici v* +1y* = 2.
Vysledek:

Absolutni minimum: [1,—1].
—1-v3 1-v3] [-1+V3 1+3
2 2 ’ 2 T2 .

Absolutni mazimum:

Priklad 6.19 Najdéte lokdlni extrémy funkce f(z,y) = x* — 102y + 4y* — 62 + 2y + 9.
Vysledek: Nema lokdlni extrémy.

Priklad 6.20 Urcete nejmensi a nejuétsi hodnotu funkce f(x,y) = x* — y* na mnoziné M dané
podminkami x > —1 — 3%, -1 <y <1l <1.

Vysledek:
Absolutni minimum: [0, 1], [0, —1].
Absolutni mazimum: [—2,1], [-2, —1].

Priklad 6.21 Najdéte extrémy funkce f(x,y) = 2>+ 2xy+y* — 2w+ 2y na kruinici v* +y* = 4.
Vysledek:

Absolutni minimum: [V/2, —/2).
—1 -7 1—\/7] [—Hx/? 1+V7

Absolutni mazimum:
2 2 2 2
Priklad 6.22 Urcete nejmensi a nejuétsi hodnotu funkce f(x,y) = z* + y? na mnoziné M dané
podminkami x > —y?, —1 <y < 1,2 < 1. Ddle ovérte, zda-li md funkce f(x,y) = z* + y* v bodé
0,0] lokdlni extrém.

Vysledek:
Absolutni minimum (i lokdlng): [0, 0].
Absolutni mazimum: [—1,—1], [-1,1], [1,—1],[1, 1].

Priklad 6.23 Urcete nejmensi a nejuétsi hodnotu funkce f(x,y) = x* + y* na mnoziné M dané
podminkami > < 4 — y*, —1 < x < 1. Ddle ovérte, zda-li md funkce f(x,y) = 2? + y* v bodé
0,0] lokdlni extrém.

Vysledek:
Absolutni minimum (i lokdlng): [0, 0].
Absolutni mazimum: [0, —2], [0, 2].

Priklad 6.24 Urcete nejmensi a nejuétsi hodnotu funkce f(x,y) = x* — y? na mnoziné M dané
podminkami x > —1—y? v < 1+y? —1 <y < 1. Ddle ovérte, zda-li md funkce f(x,y) = 2% —y>
v bodé [0, 0] lokdlni extrém.

Vysledek:
Absolutni minimum:

[0, 1], [0, —1].
Absolutni mazimum: [2,1], [2, —

1], [-2,1], [-2, -1].

Priklad 6.25 Urcete nejmensi a nejuétsi hodnotu funkce f(x,y) = 2y + 2* — 3 na mnoZiné
M dané podminkami v > —1 —y?, 0 < 1 —y?, -2 < y < 2. Ddle ovérte, zda-li md funkce
f(x,y) = 2y* + 2* — 3 v bodé [0, 0] lokdini extrém.

Vysledek:
Absolutni minimum (i lokdln7): [0, 0].
Absolutni mazimum: [—5,2], [-5, —2].
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Priklad 6.26 Urcete nejmensi a nejuétsi hodnotu funkce f(x,y) = y*> — 2zy + 2% — 3 na
mnoziné M dané podminkami y > —a2,y < 22, —1 < x < 1. Ddle ovérte, zda-li md funkce
f(z,y) = y? — 2zy + 2> — 3 v podezrelijch bodech lokdlni extrémy.
Vysledek:
2 2
Absolutni minimum: [—1, —1]. Absolutni mazimum: [1,—1]. Lokdlni minimum: {3, 3} :

Priklad 6.27 Urcete nejmensi a nejvétsi hodnotu funkee f(z,y) = y* — 2%y + 3 na mnoziné
M dané podminkami y > —1 — 2%,y < 1+ 2%, —1 < 2 < 1. Ddle ovérte, zda-li md funkce
f(z,y) = y? — 2%y + 3 v podezrelyjch bodech lokdlni extrémy.

Vysledek:
1 1
Absolutni minimum.: |1, 2} , [—1, 2} .
Absolutni mazimum: [1,—2], [-1, —2].

15



7 Diferencialni rovnice

Piiklad 7.1 Reste diferencidlni rovnici y" — 2y’ + 5y = cos(x).

1 1
Vysledek: y = e”(Asin(2z) + B cos(2z)) + 5 COST — 75 sin .

Piiklad 7.2 Reste diferencidlni rovnici xy' +y =1+ Inz, y(1) = 1.

1
Vysledek: y = In(z) + -, x> 0.
x

Piiklad 7.3 Eeste diferencidlni rovnici y" — 2y’ + by = e” sin(2z).

Vysledek: y = e” (A sin(2x) + B cos(2z) — %cos Qx) .

Piiklad 7.4 Reste diferencidlni rovnici y' — 2xy = x, y(0) = 2.
5e”” — 1

Vysledek: y = 5

Piiklad 7.5 Reste diferencidlni rovnici y” + 2y’ + 10y = e * sin(3x).
Vysledek: y = e “(Asin(3z) + B cos(3x)) — %e‘x cos(3z).

- 2
Priklad 7.6 Reste diferencidlni rovnici iy’ — Y —z%y?, y(1) = 1.
x
52
Vysledek: y = —.
ysledek: y = ———

Piiklad 7.7 Reste diferencidlni rovnici y" — 2y’ + 10y = e* sin(3z).

Vysledek: y = e”* <A sin(3z) 4+ B cos(3z) — :gcos(?w)) .

Piiklad 7.8 Reste diferencidlni rovnici y cosx + ysinx = x cos* z, y(0) = 1.

{L‘2 COS T

Vysledek: y =

+ cosx.

Piiklad 7.9 Reste diferencidlni rovnici y" — 2y’ + 2y = e* cos(x).
Vysledek: y = e” <A sin(x) + B cos(z) + gsin :17) :
Piiklad 7.10 Reste diferencidlni rovnici (2x — ye™ — y*xe™)dx + (2y — ze™ — 2?ye™)dy = 0,

y(0) = 1.
Vysledek: 2% — zye™ + y* = 1.

Piiklad 7.11 Reste diferencidlni rovnici i — 6y’ + 10y = sin(2z)e*".

1 1
Vysledek: y = e** (Asin(x) + B cos(z)) + ** (5 cos 2x — 0 sin 235) :
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Piiklad 7.12 Reste diferencidlni rovnici y' +y = e “xy, y(0) = e.
Vysledek: y = ¢ (727 D=7+2,
Piiklad 7.13 Reste diferencidlni rovnici y” + 2y’ + 10y = e~ * cos(3z).

Vysledek: y = e (A sin(3z) + B cos(3z) + %sin 393) :

Piiklad 7.14 Reste diferencidlni rovnici y" — 4y’ + 5y = €** cos(z).

Vysledek: y = e** (A sin(z) + B cos(z) + gsin m) :

2 _ 2
Piiklad 7.15 Reste diferencidlni rovnici y' = yig;—l—:rj y(l) =2.
x
Vysledek: y =0 — —— 0,e).
ysledek: y =z — - ——0, z € (0,e)

Piiklad 7.16 Reste diferencidlni rovnici i — 4y + Sy = cos(2x)e .

Vysledek: y = e2* (Asin(2z) + B cos(2z)) + ;25

(—12sin(2z) + 9 cos(2z)) .

Piiklad 7.17 Reste diferencidlni rovnici y' +y = e “xy, y(0) = 1.
Vysledek: y = ¢—¢ “(@Hh—a+l,

Piiklad 7.18 Reste diferencidlni rovnici y" + 4y’ + 4y = sin(x)e .

Vysledek: y = e > (A + Bx —sinx).

Piiklad 7.19 Reste diferencidini rovnici y' + 5y = 4e “xz, y(0) = 1.
1 )
Vysledek: y=¢e ¥ (x — = —e ",
ysledek: y = e (x 4>—|—4e
Priklad 7.20 Reste diferencidlni rovnici y” + 2y’ +y = 2e % cos x.

Vysledek: y = ¢ * (A+ Bz —2cosx).

. 2 1
Priklad 7.21 Reste diferencidlni rovnici vy’ + Y — na intervalu (0, 00).
r
C
Vysledek: y = * +2 .
x

Piiklad 7.22 Reste diferencidlni rovnici y” +1' — 2y = 2e “sinx.

Vysledek: y = Ae” + Be " + % (cosz — 3sinz).

Piiklad 7.23 Reste diferencidlni rovnici (v* — y*)dx + (y* — 2xy)dy = 0.

23 y
Vysledek: 3 xy? + 1 +C =0.
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Priklad 7.24 Reste diferencidlni rovnici y" — 2y + 1y = 6e” cos 2.

3
Vysledek: y = Ae” + Bre® — % cos 2.

Piiklad 7.25 Reste diferencidlni rovniciy — 2y = y* + 1, y(2) = 0.
1
Vysledek: y = —— — 1, 1z € (—0,3).
33—
Piiklad 7.26 Reste diferencidlni rovnici y” — 4y + 5y = 2sin(—x)e*”.

Vysledek: y = e** (Asinx + (B + ) cos 1) .

Piiklad 7.27 Reste diferencidlni rovnici y' —y = e “xy, y(0) = 1.
Vysledek: y = e*~%¢ "—¢ " FL,

Piiklad 7.28 Reste diferencidlni rovnici y' + 2y = y* + 1, y(2) = 0.
1

Vysledek: y=1— ——
x

e (1, 00).

Piiklad 7.29 Reste diferencidlni rovnici y” + 4y’ + 4y = sin(2x)e™**.
sin 21;)

Vysledek: y = e ** (A + Bx —

Piiklad 7.30 Reste diferencidlni rovnici y' — 2y = e “wy, y(0) = 1.

Vysledek: y = ¢~ "¢ L

Piiklad 7.31 Reste diferencidlni rovnici i’ — 4y’ + 4y = cos(x)e .

—2z

(&
Vysledek: y = ¢** (A + B
ysledek: y = e (A + x)—|—289

Piiklad 7.32 Reste diferencidlni rovnici y' + 3y = 4e™ "z, y(0) = 1.
Vysledek: y = (22 — 1)e™* + 2e7%.

(15cosx — 8sinz) .

Piiklad 7.33 Reste diferencidlni rovnici y” — 4y’ + 8y = sin(2x)e™**.
—2z

Vysledek: y = (Asin(2x) + B cos(2z))e* + (sin(2z) + Cos(2x))632 :

Piiklad 7.34 Reste diferencidlni rovnici iy + 2xy = —2x, y(0) = 1.
Vysledek: y = 2¢™* — 1.

Piiklad 7.35 Reste diferencidlni rovnici y” — 4y + 5y = cos(x)e .
6721

40 -

Vysledek: y = (Asin(x) + B cos(z))e** + (2 cos(z) — sin(z))

/

Piiklad 7.36 Reste diferencidlni rovnici % + 22y = —2x3%, y(0) = 1.

1

VySIGdek: Y = ﬁ
ers —
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Piiklad 7.37 Reste diferencidlni rovnici iy — 6y + S8y = sin(z)e*".
Vysledek: y = Ae* + Be* + (2cos(z) — sin(w)) e;m.

Piiklad 7.38 Reste diferencidlni rovniciy' +y = y?, y(2) = 1.
Vysledek: y = 1.

Piiklad 7.39 Reste diferencidlni rovnici y" — 6y’ 4+ 10y = cos(2z)e**.

2x

Vysledek: y = €** (Asin(x) + Bcos(z)) — (cos(2x) + QSin(Qx))el—O.

Priklad 7.40 Reste diferencidlni rovnici y' — 3y = ze® y(0) = 5.

2
Vysledek: y — ¢*° (”; + 5) .
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8 Integraly

Priklad 8.1 Integrujte funkci f(x,y) =5+ 2x + 2y + 8xy + 5 bres oblast urcenou

(5—2y—ux) ) g
podminkou |x| + |y| < 1. (10 + 3 In <7>)
Priklad 8.2 Integrujte funkci f(x,y) =5+ 2x + 12zy + (10— 2y — 22 pres oblast urcenou

1
podminkou |x — 1| + |y — 1] < 1. <38 + 16)
18
Piiklad 8.3 Integrujte funkci f(x,y) = sin(2x + 1) + 83y 207 pres oblast tvorenou
9 3 9
trojihelnikem s vrcholy [1,1], [0, —1] a [—1,0]. (8 sinl — 3 sin 3 + 110)
” , , 36 y y >
Priklad 8.4 Integrujte funkci f(x,y) = cos(2z) + (10 = 2y — 32)° pres oblast tvorenou troji-
57 3
helnikem s vrcholy [—1,—1], [0,1] a [1,0]. (70 — 5 cos 2)
15
Priklad 8.5 Spoctéte [;4xydxdy, kde I = {[z,y]; 1 < 2? +y*> <4;y > 0; x > 0}. <2)
1
Priklad 8.6 Integrujte funkci f(z,y) =y + pres oblast tvorenou trojuhelnikem
(5 —2x 4 2y)4
118
s vrcholy [0,0], [-1,—1], [2,0]. (—375)
In(z? + y*)

Priklad 8.7 Integrujte funkci f(x,y) = e pres oblast urcenou vatahem 1 < 22 + 92 <

: )

Priklad 8.8 Integrujte funkci f(x,y) =y + 2+ (21 = 21y 1 pres oblast tvorenou trojihel-
nikem s vrcholy [0,0], [—-1, —1], [1, —1]. <—1 - ln85 + 194 (27/3 - 1))
Piiklad 8.9 Integrujte funkci f(x,y) = (22 4+ y)e” " na mnoziné 22 +y? < 1. ()
Piiklad 8.10 Integrujte funkci xy pres oblast ohranicenou nerovnici 4x* + y? < 4. (0)
Priklad 8.11 Integrujte funkci f(x,y) = x+y+(1+x1+y)3 pres oblast tvorenou trojihelnikem

s vrcholy [0,0], [1,—1], [2,0]. (1)

Priklad 8.12 Integrujte funkci f(z,y) = xy —y +sin(2y) pres oblast tvorenou funkcemi x = y>
3 1
ar=—3y—2. (—8+4(sin4—|—cos4—co:32+sin2))
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Priklad 8.13 Integrujte funkci f(x,y) = (2% + 4y2)e‘“2+4y2 na mnoziné x* + 4y? < 1. (g)

Piiklad 8.14 Integrujte funkci f(x,y) = 2°/1 + y + cos(y) pres oblast tvotenou trojihelnikem

37 3 1088 342
holy 10,0], [1,2], [2,1]. —— ——cos2+3cosl — —V2+ —V3
s vrcholy [0, 0], [1,2], [2,1] (30 2COS—|—COS 105 +35\/_)
1
Priklad 8.15 Integrujte funkci f(z,y) = x+ (10— 32 + 2)° pres oblast tvorenou trojuhelnikem
3
hol -1 —4.0]. —10 + ——
s rcholy (0,0, [~1,3], [~4,0) (~10+ 5055)
1
Priklad 8.16 Integrujte funkci f(z,y) =y + (1= 62+ 2)° pres oblast tvorenou trojuhelnikem
144
s vrcholy [0,0], [-1, 3], [-4,0]. (—)
25
1

Priklad 8.17 Integrujte funkci f(x,y) = x +

vrcholy [0,0], [—1, —1], [-2,0].

Vysledek: Funkce neni na zadané oblasti spojitd, takzZe vysledek zdvisi na poradi integrace.
10

Pokud integrujeme nejprve podle proménné x dostaneme 3

(T pres oblast tvorenou trojihelnikem s
rTry

Piiklad 8.18 Integrujte funkci f(x,y) = y+
s vrcholy [0, 0], [1,1], [2,0].

3+ 22+ 29)° pres oblast tvorenou trojihelnikem
T2y

2 1 1 1

1-2— - .
3 .6 21.72.3 213
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