Analyza v komplexnim oboru: Elementarni funkce

1 Definice exponencialni a goniometrickych funkci

P1i zavadéni téchto funkci vychézime z poznatki redlné analyzy, kde jsou funkce defi-
novany jako sou¢ty mocninnych fad. Tento piistup ndm néasledné umoziuje prirozené
rozsifeni (analytické pokracovani) do komplexniho oboru.

1.1 Definice v redlném oboru R
V realném oboru definujeme funkce exp(x), sinz a cosz pomoci jejich Taylorovych rad

se stfedem v nule (Maclaurinovy fady). Pro kazdé x € R tyto rady absolutné konverguji
a maji tvar:
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1.2 Rozsiteni do komplexniho oboru C

Rozdil pti prfechodu do C spoéiva v tom, Ze za proménnou dosazujeme komplexni ¢islo
z = x+1y. Definice funkci ztistavaji formalné shodné, tedy pro libovolné z € C definujeme:
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1.3 Charakter zmén pfi prechodu do komplexniho oboru

Prechod od realné proménné = ke komplexni proménné z neni pouze formalni zadménou
symbolt. I kdyz fady vypadaji stejné, vyznam a vlastnosti vyslednych funkci se zasadné
transformuyji.

Ztrata geometrické nazornosti a nutnost analytické definice

V realném oboru jsme zvykli na intuitivni geometrické definice: sinus a kosinus jako sou-
fadnice bodu na jednotkové kruznici, exponencialu jako spojity rist. V komplexnim oboru
vsak tyto predstavy selhavaji.



Pojem jednotkové kruZnice v R? nelze pifmo pouZit, pokud je argumentem komplexni
¢islo z. Stejné tak vyraz e*, kde z = x + 1y, nelze chapat jako opakované nasobeni.

Abychom se vyhnuli logickym nekonzistencim, volime ryze analyticky pfistup. Definice
pomoci mocninnych fad:

e stoji na pevnych zakladech teorie konvergence,
e umoznuje jednotnou definici na celé C,

e zarucuje holomorfnost funkeci.

Absolutni konvergence

Pro korektnost definice je nutné, aby fady konvergovaly. Pomoci podilového kritéria lze
ukazat, ze pro e®,sin z i cos z je polomér konvergence R = oo:
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Diky R = oo konverguji tyto rady absolutné a stejnomérné v celém C. Z vlastnosti
mocninnych fad vyplyva, ze funkce jsou v celém kruhu konvergence holomorfni.

Holomorfnost

Holomorfni funkce jsou komplexni funkce definované na otevienych podmnozinach kom-
plexni roviny C takové, Ze jsou komplexné diferencovatelné. Diferencovatelnost v komplex-
nich ¢islech je silnéjsi pozadavek nez v ¢islech redlnych a implikuje fakt, Zze dana funkce je
nekonecné diferencovatelna a rozvinutelna do Taylorovy fady. Funkce holomorfni na celé
komplexni roviné se oznacuje jako celistva (celd).

V komplexnim oboru je pozadavek na derivaci podle komplexni proménné z mnohem
prisnéjsi nez v oboru realném.

Definice 1.1 (Holomorfnost). Funkce f je holomorfni v bodé zy, pokud existuje limita

f/(z0) = lim f(zo+h) — f(20)

h—0 h ’

kde h € C. Klicovym pozadavkem je, aby hodnota této limity byla stejna bez ohledu na
to, z jakého sméru se v komplexni roviné k bodu z, blizime (tzv. nezéavislost na cesté).

Holomorfni funkce maji urcité vlastnosti, které jsou pro nas uzitec¢né. Plati, Ze soucet,
rozdil i souc¢in dvou holomorfnich funkci je opét holomorfni. Podil je holomorfni vSude
tam, kde je jmenovatel nenulovy. Fascinujici vlastnosti také je, Ze derivace holomorfni
funkce je opét holomorfni funkci. To znamené, Ze ma-li funkce prvni komplexni derivaci,
mé automaticky derivace vSech radi.

Holomorfnost méa také urcity vztah k fadam. Funkce, ktera je holomorfni v okoli bodu z,
lze v tomto okoli vzdy jednoznac¢né rozvinout do Taylorovy rady. Tato rada konverguje
na kruhu o poloméru w, coz je vzdalenost k nejblizsi singularité. Kdy singularita je v
matematice obecny nazev bodu, ve kterém dany matematicky objekt neni definovén,



nebo kde se objekt nechova v jistém smyslu rozumné - napiiklad neni diferencovatelny.
V nasem pripadé je tedy singularita bod, kde funkce prestava byt holomorfni. Jelikoz ale
nase funkce zadné singularity nemaji, muzeme fici, ze konverguji na celém C.

Typickym piikladem neholomorfni funkce je napitiklad absolutni hodnota |z|, nebo reélna
¢ast Re(z) a imaginarni ¢ast Im(z) holomorfni funkce. Tyto funkce totiz nespliuji pfisné
podminky pro existenci komplexni derivace (tzv. Cauchyho-Riemannovy podminky).

Euleriv vzorec

Diky do pfechodu z R do C vznikne také ur¢ity vztah mezi funkcemi exp(z), sinz a cos x.
Tento vztah je zndmy jako Eulertv vzorec.

Véta 1.1 (Euleriv vzorec). Pro kazdé z € C plati:
€' = cosz +isin 2.

Diikaz. Pti odvozeni vyuzijeme mocniny imaginarni jednotky i:

Dosadime iz do Taylorovy fady pro exponencialu:
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Vzhledem k vyge uvedenym mocninam ¢ mizeme fadu prerovnat (coz nam dovoluje prave
absolutni konvergence) na realnou a imaginarni ¢ast:

» 22 2320

Uvniti zévorek rozpoznavame Taylorovy fady pro funkce cosz a sin z (viz Definice 1.1).
Dostavame tak fundamentéalni Eulertv vzorec:

e¥ =cosz+isinz

O

Eulerav vzorec nam tak umoznuje definovat goniometrické funkce bez nutnosti pouzivat
nekonecéné rady, pouze pomoci exponencidlni funkce. Stejny postup mizeme pouzit pro
argument —iz:

e = (72 = cos(—z) + isin(—2z),

kde diky sudosti kosinu cos(—z) = cos z a lichosti sinu sin(—z) = — sin z dostaneme:

e ¥ =cosz —1isinz

Nyni méme soustavu dvou lineédrnich rovnic pro neznamé cos z a sin z:

€' = cosz +isinz (1)

e =cosz —isinz (2)



Se¢tenim rovnic (1) a (2) eliminujeme ¢len s imaginarni jednotkou a sinem:
(€”#) + (e7%) = (cos z + isin z) + (cos z — isin 2)
€% +e " =2cosz + (isinz — isin 2)
e” + e =2cosz
Odtud po vydéleni dvéma dostavame vysledny vztah pro kosinus:
6iz + e—iz
2

COS 2 =

Obdobné odectenim rovnice (2) od rovnice (1) eliminujeme ¢len s kosinem:

(€”) — (e7%) = (cos z + isin z) — (cos z — isin 2)
€ —e " = cosz — cos z +isinz — (—isin z)
e — e =2isinz

Odtud po vydéleni vyrazem 2¢ dostavame vysledny vztah pro sinus:
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Tato vyjadieni, odvozena z Eulertiv vzorec se ¢asto vyuzivaji jako primarni definice
goniometrickych funkeci, nebot jsou vypocetné efektivnéjsi nez operace s nekonecénymi
radami.

V komplexnim oboru také dochazi k hlubokému propojeni goniometrickych funkei s funk-
cemi hyperbolickymi (sinh, cosh). Toto propojeni vysvétluje, pro¢ goniometrické funkce
v C pozbyvaji svou realnou omezenost. Tato vyjadreni se v komplexni analyze vyuzivaji
jako alternativni (a Casto praktictéjsi) definice goniometrickych funkei.

P1i odvozeni vychazime ze vztahu pro komplexni sinus a dosadime za argument ryze
imaginarni ¢islo z = dy:

ei(iy) — e_i(iy) ei2y — €_i2y e_y — ey

sin(2y) = = =
(i) 2i 2i 2i
Tento vyraz upravime vynasobenim c¢itatele i jmenovatele hodnotou —i:
—i(e”¥ — €Y 1(e¥ —e™V ey —eV
sin(iy) = ( : ): ( ):z'-—
2i(—1) 2 2
eV—e~Y

Protoze vyraz definuje hyperbolicky sinus sinh y, ziskdvame identitu:

2
sin(iy) = isinhy
Analogicky postupujeme pro kosinus s vyuzitim jeho exponencialniho vyjadreni:
el 4 e=iliy) ey 4 =17y eV
2 B 2 2

Jelikoz ey+2€7y definuje hyperbolicky kosinus cosh y, dostavame vztah:

cos(iy) =

cos(iy) = coshy

Vyznam pro analyzu

Tato syntéza vysvétluje neomezenost goniometrickych funkci v C. Zatimco v realném
oboru jsou funkce sinx a cos x omezené, v komplexnim oboru diky vztahu k funkci cosh y
(ktera pro y — oo roste nade v8echny meze) mohou nabyvat libovolné velkych hodnot.
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2 Cauchytiv soucin rad a vlastnosti exponencialy

P1i praci s nekoneénymi fadami v komplexnim oboru potiebujeme pravidlo pro jejich
nasobeni. Zatimco u kone¢nych polynomt je postup jasny, u nekoneénych fad musime
zajistit, aby vysledny soucet daval smysl.

2.1 Definice Cauchyova soucinu rad

Méjme dvé fady >~ an a y b, s komplexnimi ¢leny a,,b, € C. Jejich Cauchytv
soucin je definovan jako fada ) - ¢,, jejiz ¢leny jsou urCeny vztahem:

Cn = aObn + albn—l + -+ anbO = Z akbn—k
k=0

2.2 Véta o Cauchyové soucinu absolutné konvergentnich rad

Tato véta stanovuje podminky, za kterych je operace souc¢inu korektni:

Véta 2.1. Necht’ fady > " jay, a Y b, jsou absolutné konvergentni. Pak je i jejich
Cauchyiv souciny . ¢, absolutné konvergentni a plati:

(Sm) (50) -2

2.3 Odvozeni vztahu pro exponencialu souctu

Pomoci vyse uvedené véty dokdzeme, Ze pro libovolna zq, zo € C plati zékladni funkcio-

nalni rovnice:

21 22 z1+22

e -e°=e€

k l
Diikaz. Definujeme ¢leny Fad pro obé exponencialy: aj, = 2+ a b = 2. Vime, Ze tyto Fady
konverguji absolutné v celém C. Sestavime ¢len ¢, jejich Cauchyova soucinu:

Vyraz upravime rozsifenim zlomku hodnotou n!:

En n|zk|n_ Zl? an()Zl’Z?

Podle binomické véty je suma uvniti vyrazu rovna (z; + 23)". Dostavame tedy:

()"
" n!
Cely soucin Tad je pak roven:

o0 o0
Zl + 22
— § Cr = E — 621+32

n=0 n=0



3 Véta o jednoznacnosti (identité) a jeji dusledky

Tato kapitola predstavuje jeden z nejsilnéjsich nastroji komplexni analyzy. Véta o jed-
noznacnosti ndm dava ,legitimni pravo” pouzivat vSe, co zname z realnych ¢isel, i v kom-
plexnim oboru, aniz bychom museli kazdy vzorec znovu pracné dokazovat z definic rad.

3.1

Véta o jednoznacnosti

V komplexni analyze plati, Ze holomorfni funkce je tak pevné svazana se svymi hodnotami,
ze jeji chovani na realné ose jednoznacné urcuje jeji chovani v celém komplexnim svéte.

Véta 3.1 (Véta o jednoznacnosti). Necht” fi(z) a fa(z) jsou dvé holomorfni funkce na
celém komplexnim oboru C. Pokud plati, Ze se tyto funkce shoduji pro vSechna redlnd cisla,

tedy:

vz eR: fi(z) = fao(x)

pak se tyto funkce nutné musi shodovat i pro vSechna komplexnt c¢isla:

V2 e C: fi(2) = h(2)

Poznamka k obecnosti

Tato véta se da formulovat i obecnéji pro libovolnou oblast D C C. Stadi, aby se funkce
f1, f2 shodovaly na néjaké mnoziné M, kterd ma v D alespon jeden hromadny bod (coZ
realnd osa spliuje). V takovém piipadé je shoda funkei v celém D zarucena.

3.2

Disledky pro elementarni funkce

Hlavnim piinosem této véty je tzv. princip analytického pokracovani identit. Diky nému

vime,

ze algebraické vztahy, které jsme zvykli pouzivat v R, zustavaji v platnosti i po

rozSiteni do C.

1.

Pienos goniometrickych identit: Uvazujme napiiklad zakladni vztah sin®z +
cos? z = 1. Definujme levou stranu jako holomorfni funkeci f(z) = sin® z 4 cos? z a
pravou stranu jako holomorfni funkci fo(z) = 1. Z realné analyzy vime, Ze pro kazdé
z € R plati fi(z) = fo(z). Podle véty o jednoznac¢nosti musi tato rovnost platit i
pro vSechna z € C. Stejnym zptisobem se do komplexniho oboru prenaseji vsechny
souctové vzorce, vzorce pro dvojnasobné argumenty a dalsi identity.

. Funkcionalni rovnice exponencialy: Véta o jednoznacnosti poskytuje alterna-

tivni a velmi rychly dikaz vztahu e*17%2 = ¢*1 . ¢*2, Protoze tato rovnost plati pro
realnd ¢isla a obé strany jsou holomorfni (jako funkce dvou komplexnich promén-
nych), musi identita platit univerzalné.

. Vztah e* - e7* = 1: Opét, jelikoz pro realné x plati e - e = 1 a funkce na obou

strandch jsou holomorfni na C, véta o jednoznacnosti okamzité zarucuje platnost
tohoto vztahu pro libovolné komplexni z.



4 Resené priklady
Priklad 1. Exponencialni rovnice exp(z) = 3 — 2i Hledame komplexni ¢islo z = = + iy

takové, aby platilo e* = 3 — 21.

Krok 1: Rozpis levé strany
Podle vlastnosti komplexni exponencidly plati: e* = e®T% = ¢%(cosy + i siny).

Krok 2: Prepis pravé strany do goniometrického tvaru
Uréime modul a argument ¢isla w = 3 — 2i:

e Modul: |[w| = /3% + (-2)2 = V/13.
e Argument: Cislo lezi ve IV. kvadrantu (Re > 0, Im < 0).

p = arctg (?) ~ —0, 588 rad

Pravou stranu tedy zapiSeme jako: 3 — 2¢ = v/13(cos(—0, 588) + i sin(—0, 588)).

Krok 3: Porovnani a vypocet
Porovnanim modulii a argumentii (pfi zapocteni periody 2kw) ziskame:

L. e =V13 = 2=1In(V13) =1 In(13) ~ 1,28,
2. y=—0,588 4+ 2km pro k € Z.

Vysledek:
1
i=3 In13 4 i(—0,588 + 2km), k€Z

Piiklad 2. Goniometricka rovnice sin(z) = 6i Pfi feSeni vyuzijeme substituci na kvadra-
tickou rovnici.
Krok 1: Dosazeni definice a tiprava
eiz - efiz
21

Zavedeme substituci w = ¢ (tedy e = 1/w):

=6i = % —e " =12i>=—12

w——=-12 = w+12w—-1=0
w

Krok 2: Vypocet kotrent w
Doplnénim na ¢tverec: (w+6)? —37 =0 = w2 = —6 £ /37.

Krok 3: Navrat ze substituce (e = w)
Vime, 7e ¢ = @) = e~¥Y(cosx + isinx).

e Pro w; = /37 — 6: (Kladné ¢islo, thel arg(w) = 0).

eV =V37T—-6 = y;, = —In(V/37—6), z=2kn



e Pro wy = —6 — /37: (Zaporné ¢islo, thel arg(w) = 7).

eV =6+V37T = 3y =—In(6+V37), z=n+2knr

Vysledek:

2 = 2km — i1n(v/37 — 6)
2 = (2k 4+ 1)1 — i In(\/37 + 6)

5 Metodické poznamky k vypoctim

e Urceni kvadrantu: Pii vypoctu arctg(y/x) je vzdy nutné ovéfit polohu bodu v
Gaussové roviné. Pro z < 0 pfi¢itame k vysledku z kalkulacky 7.

e Logaritmovani zapornych c¢isel: V komplexnim oboru se zaporné ¢islo w inter-
pretuje jako |w| - €'™. Proto se v feSeni objevuje posun o 7 u imaginarni ¢asti.

e Perioda: Nezapomindme na 2k, protoze komplexni exponenciala je periodicka
funkce s periodou 27s.

5.1 Vyznam pro studium

Diky této vété nemusime pii praci s sin z, cos z nebo e* neustéle operovat s nekoneénymi
Ffadami nebo Cauchyovymi souc¢iny. Pokud narazime na vyraz, o kterém vime, Ze v realném
oboru funguje urcitym zptsobem, véta o jednoznac¢nosti nam dovoluje s nim v C pracovat
stejné, pokud jsou dané funkce holomorfni (coz nami definované celistvé funkce jsou).



