
Analýza v komplexním oboru: Elementární funkce

1 Definice exponenciální a goniometrických funkcí

Při zavádění těchto funkcí vycházíme z poznatků reálné analýzy, kde jsou funkce defi-
novány jako součty mocninných řad. Tento přístup nám následně umožňuje přirozené
rozšíření (analytické pokračování) do komplexního oboru.

1.1 Definice v reálném oboru R

V reálném oboru definujeme funkce exp(x), sin x a cos x pomocí jejich Taylorových řad
se středem v nule (Maclaurinovy řady). Pro každé x ∈ R tyto řady absolutně konvergují
a mají tvar:

Exponenciála:

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+ . . .

Sinus:

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+ . . .

Kosinus:

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+ . . .

1.2 Rozšíření do komplexního oboru C

Rozdíl při přechodu do C spočívá v tom, že za proměnnou dosazujeme komplexní číslo
z = x+iy. Definice funkcí zůstávají formálně shodné, tedy pro libovolné z ∈ C definujeme:

exp(z) = ez =
∞∑
n=0

zn

n!
, sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
, cos z =

∞∑
n=0

(−1)n
z2n

(2n)!
.

1.3 Charakter změn při přechodu do komplexního oboru

Přechod od reálné proměnné x ke komplexní proměnné z není pouze formální záměnou
symbolů. I když řady vypadají stejně, význam a vlastnosti výsledných funkcí se zásadně
transformují.

Ztráta geometrické názornosti a nutnost analytické definice

V reálném oboru jsme zvyklí na intuitivní geometrické definice: sinus a kosinus jako sou-
řadnice bodu na jednotkové kružnici, exponenciálu jako spojitý růst. V komplexním oboru
však tyto představy selhávají.
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Pojem jednotkové kružnice v R2 nelze přímo použít, pokud je argumentem komplexní
číslo z. Stejně tak výraz ez, kde z = x+ iy, nelze chápat jako opakované násobení.

Abychom se vyhnuli logickým nekonzistencím, volíme ryze analytický přístup. Definice
pomocí mocninných řad:

• stojí na pevných základech teorie konvergence,

• umožňuje jednotnou definici na celé C,

• zaručuje holomorfnost funkcí.

Absolutní konvergence

Pro korektnost definice je nutné, aby řady konvergovaly. Pomocí podílového kritéria lze
ukázat, že pro ez, sin z i cos z je poloměr konvergence R = ∞:

R = lim
n→∞

∣∣∣∣ an
an+1

∣∣∣∣ = lim
n→∞

(n+ 1) = ∞

Díky R = ∞ konvergují tyto řady absolutně a stejnoměrně v celém C. Z vlastností
mocninných řad vyplývá, že funkce jsou v celém kruhu konvergence holomorfní.

Holomorfnost

Holomorfní funkce jsou komplexní funkce definované na otevřených podmnožinách kom-
plexní roviny C takové, že jsou komplexně diferencovatelné. Diferencovatelnost v komplex-
ních číslech je silnější požadavek než v číslech reálných a implikuje fakt, že daná funkce je
nekonečně diferencovatelná a rozvinutelná do Taylorovy řady. Funkce holomorfní na celé
komplexní rovině se označuje jako celistvá (celá).

V komplexním oboru je požadavek na derivaci podle komplexní proměnné z mnohem
přísnější než v oboru reálném.

Definice 1.1 (Holomorfnost). Funkce f je holomorfní v bodě z0, pokud existuje limita

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
,

kde h ∈ C. Klíčovým požadavkem je, aby hodnota této limity byla stejná bez ohledu na
to, z jakého směru se v komplexní rovině k bodu z0 blížíme (tzv. nezávislost na cestě).

Holomorfní funkce mají určité vlastnosti, které jsou pro nás užitečné. Platí, že součet,
rozdíl i součin dvou holomorfních funkcí je opět holomorfní. Podíl je holomorfní všude
tam, kde je jmenovatel nenulový. Fascinující vlastností také je, že derivace holomorfní
funkce je opět holomorfní funkcí. To znamená, že má-li funkce první komplexní derivaci,
má automaticky derivace všech řádů.

Holomorfnost má také určitý vztah k řadám. Funkce, která je holomorfní v okolí bodu z0,
lze v tomto okolí vždy jednoznačně rozvinout do Taylorovy řady. Tato řada konverguje
na kruhu o poloměru ω, což je vzdálenost k nejbližší singularitě. Kdy singularita je v
matematice obecný název bodu, ve kterém daný matematický objekt není definován,

2



nebo kde se objekt nechová v jistém smyslu rozumně - například není diferencovatelný.
V našem případě je tedy singularita bod, kde funkce přestává být holomorfní. Jelikož ale
naše funkce žádné singularity nemají, můžeme říci, že konvergují na celém C.

Typickým příkladem neholomorfní funkce je například absolutní hodnota |z|, nebo reálná
část Re(z) a imaginární část Im(z) holomorfní funkce. Tyto funkce totiž nesplňují přísné
podmínky pro existenci komplexní derivace (tzv. Cauchyho-Riemannovy podmínky).

Eulerův vzorec

Díky do přechodu z R do C vznikne také určitý vztah mezi funkcemi exp(x), sin x a cos x.
Tento vztah je známý jako Eulerův vzorec.

Věta 1.1 (Eulerův vzorec). Pro každé z ∈ C platí:

eiz = cos z + i sin z.

Důkaz. Při odvození využijeme mocniny imaginární jednotky i:

i2 = −1, i3 = −i, i4 = 1, i5 = i, . . .

Dosadíme iz do Taylorovy řady pro exponenciálu:

eiz =
∞∑
n=0

(iz)n

n!
= 1 + iz +

i2z2

2!
+

i3z3

3!
+

i4z4

4!
+ . . .

Vzhledem k výše uvedeným mocninám i můžeme řadu přerovnat (což nám dovoluje právě
absolutní konvergence) na reálnou a imaginární část:

eiz =

(
1− z2

2!
+

z4

4!
− . . .

)
+ i

(
z − z3

3!
+

z5

5!
− . . .

)
Uvnitř závorek rozpoznáváme Taylorovy řady pro funkce cos z a sin z (viz Definice 1.1).
Dostáváme tak fundamentální Eulerův vzorec:

eiz = cos z + i sin z

Eulerův vzorec nám tak umožňuje definovat goniometrické funkce bez nutnosti používat
nekonečné řady, pouze pomocí exponenciální funkce. Stejný postup můžeme použít pro
argument −iz:

e−iz = ei(−z) = cos(−z) + i sin(−z),

kde díky sudosti kosinu cos(−z) = cos z a lichosti sinu sin(−z) = − sin z dostaneme:

e−iz = cos z − i sin z

Nyní máme soustavu dvou lineárních rovnic pro neznámé cos z a sin z:

eiz = cos z + i sin z (1)
e−iz = cos z − i sin z (2)
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Sečtením rovnic (1) a (2) eliminujeme člen s imaginární jednotkou a sinem:

(eiz) + (e−iz) = (cos z + i sin z) + (cos z − i sin z)

eiz + e−iz = 2 cos z + (i sin z − i sin z)

eiz + e−iz = 2 cos z

Odtud po vydělení dvěma dostáváme výsledný vztah pro kosinus:

cos z =
eiz + e−iz

2

Obdobně odečtením rovnice (2) od rovnice (1) eliminujeme člen s kosinem:

(eiz)− (e−iz) = (cos z + i sin z)− (cos z − i sin z)

eiz − e−iz = cos z − cos z + i sin z − (−i sin z)

eiz − e−iz = 2i sin z

Odtud po vydělení výrazem 2i dostáváme výsledný vztah pro sinus:

sin z =
eiz − e−iz

2i

Tato vyjádření, odvozená z Eulerův vzorec se často využívají jako primární definice
goniometrických funkcí, neboť jsou výpočetně efektivnější než operace s nekonečnými
řadami.

V komplexním oboru také dochází k hlubokému propojení goniometrických funkcí s funk-
cemi hyperbolickými (sinh, cosh). Toto propojení vysvětluje, proč goniometrické funkce
v C pozbývají svou reálnou omezenost. Tato vyjádření se v komplexní analýze využívají
jako alternativní (a často praktičtější) definice goniometrických funkcí.

Při odvození vycházíme ze vztahu pro komplexní sinus a dosadíme za argument ryze
imaginární číslo z = iy:

sin(iy) =
ei(iy) − e−i(iy)

2i
=

ei
2y − e−i2y

2i
=

e−y − ey

2i

Tento výraz upravíme vynásobením čitatele i jmenovatele hodnotou −i:

sin(iy) =
−i(e−y − ey)

2i(−i)
=

i(ey − e−y)

2
= i · e

y − e−y

2

Protože výraz ey−e−y

2
definuje hyperbolický sinus sinh y, získáváme identitu:

sin(iy) = i sinh y

Analogicky postupujeme pro kosinus s využitím jeho exponenciálního vyjádření:

cos(iy) =
ei(iy) + e−i(iy)

2
=

ei
2y + e−i2y

2
=

e−y + ey

2

Jelikož ey+e−y

2
definuje hyperbolický kosinus cosh y, dostáváme vztah:

cos(iy) = cosh y

Význam pro analýzu
Tato syntéza vysvětluje neomezenost goniometrických funkcí v C. Zatímco v reálném
oboru jsou funkce sin x a cos x omezené, v komplexním oboru díky vztahu k funkci cosh y
(která pro y → ∞ roste nade všechny meze) mohou nabývat libovolně velkých hodnot.
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2 Cauchyův součin řad a vlastnosti exponenciály

Při práci s nekonečnými řadami v komplexním oboru potřebujeme pravidlo pro jejich
násobení. Zatímco u konečných polynomů je postup jasný, u nekonečných řad musíme
zajistit, aby výsledný součet dával smysl.

2.1 Definice Cauchyova součinu řad

Mějme dvě řady
∑∞

n=0 an a
∑∞

n=0 bn s komplexními členy an, bn ∈ C. Jejich Cauchyův
součin je definován jako řada

∑∞
n=0 cn, jejíž členy jsou určeny vztahem:

cn = a0bn + a1bn−1 + · · ·+ anb0 =
n∑

k=0

akbn−k

2.2 Věta o Cauchyově součinu absolutně konvergentních řad

Tato věta stanovuje podmínky, za kterých je operace součinu korektní:

Věta 2.1. Necht’ řady
∑∞

n=0 an a
∑∞

n=0 bn jsou absolutně konvergentní. Pak je i jejich
Cauchyův součin

∑∞
n=0 cn absolutně konvergentní a platí:(

∞∑
n=0

an

)
·

(
∞∑
n=0

bn

)
=

∞∑
n=0

cn

2.3 Odvození vztahu pro exponenciálu součtu

Pomocí výše uvedené věty dokážeme, že pro libovolná z1, z2 ∈ C platí základní funkcio-
nální rovnice:

ez1 · ez2 = ez1+z2

Důkaz. Definujeme členy řad pro obě exponenciály: ak =
zk1
k!

a bl =
zl2
l!
. Víme, že tyto řady

konvergují absolutně v celém C. Sestavíme člen cn jejich Cauchyova součinu:

cn =
n∑

k=0

zk1
k!

· zn−k
2

(n− k)!

Výraz upravíme rozšířením zlomku hodnotou n!:

cn =
1

n!

n∑
k=0

n!

k!(n− k)!
zk1z

n−k
2 =

1

n!

n∑
k=0

(
n

k

)
zk1z

n−k
2

Podle binomické věty je suma uvnitř výrazu rovna (z1 + z2)
n. Dostáváme tedy:

cn =
(z1 + z2)

n

n!

Celý součin řad je pak roven:

ez1 · ez2 =
∞∑
n=0

cn =
∞∑
n=0

(z1 + z2)
n

n!
= ez1+z2
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3 Věta o jednoznačnosti (identitě) a její důsledky

Tato kapitola představuje jeden z nejsilnějších nástrojů komplexní analýzy. Věta o jed-
noznačnosti nám dává „legitimní právo“ používat vše, co známe z reálných čísel, i v kom-
plexním oboru, aniž bychom museli každý vzorec znovu pracně dokazovat z definic řad.

3.1 Věta o jednoznačnosti

V komplexní analýze platí, že holomorfní funkce je tak pevně svázána se svými hodnotami,
že její chování na reálné ose jednoznačně určuje její chování v celém komplexním světě.

Věta 3.1 (Věta o jednoznačnosti). Necht’ f1(z) a f2(z) jsou dvě holomorfní funkce na
celém komplexním oboru C. Pokud platí, že se tyto funkce shodují pro všechna reálná čísla,
tedy:

∀x ∈ R : f1(x) = f2(x)

pak se tyto funkce nutně musí shodovat i pro všechna komplexní čísla:

∀z ∈ C : f1(z) = f2(z)

Poznámka k obecnosti

Tato věta se dá formulovat i obecněji pro libovolnou oblast D ⊂ C. Stačí, aby se funkce
f1, f2 shodovaly na nějaké množině M , která má v D alespoň jeden hromadný bod (což
reálná osa splňuje). V takovém případě je shoda funkcí v celém D zaručena.

3.2 Důsledky pro elementární funkce

Hlavním přínosem této věty je tzv. princip analytického pokračování identit. Díky němu
víme, že algebraické vztahy, které jsme zvyklí používat v R, zůstávají v platnosti i po
rozšíření do C.

1. Přenos goniometrických identit: Uvažujme například základní vztah sin2 z +
cos2 z = 1. Definujme levou stranu jako holomorfní funkci f1(z) = sin2 z + cos2 z a
pravou stranu jako holomorfní funkci f2(z) = 1. Z reálné analýzy víme, že pro každé
x ∈ R platí f1(x) = f2(x). Podle věty o jednoznačnosti musí tato rovnost platit i
pro všechna z ∈ C. Stejným způsobem se do komplexního oboru přenášejí všechny
součtové vzorce, vzorce pro dvojnásobné argumenty a další identity.

2. Funkcionální rovnice exponenciály: Věta o jednoznačnosti poskytuje alterna-
tivní a velmi rychlý důkaz vztahu ez1+z2 = ez1 · ez2 . Protože tato rovnost platí pro
reálná čísla a obě strany jsou holomorfní (jako funkce dvou komplexních proměn-
ných), musí identita platit univerzálně.

3. Vztah ez · e−z = 1: Opět, jelikož pro reálné x platí ex · e−x = 1 a funkce na obou
stranách jsou holomorfní na C, věta o jednoznačnosti okamžitě zaručuje platnost
tohoto vztahu pro libovolné komplexní z.
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4 Řešené příklady

Příklad 1. Exponenciální rovnice exp(z) = 3 − 2i Hledáme komplexní číslo z = x + iy
takové, aby platilo ez = 3− 2i.

Krok 1: Rozpis levé strany
Podle vlastností komplexní exponenciály platí: ez = ex+iy = ex(cos y + i sin y).

Krok 2: Přepis pravé strany do goniometrického tvaru
Určíme modul a argument čísla w = 3− 2i:

• Modul: |w| =
√
32 + (−2)2 =

√
13.

• Argument: Číslo leží ve IV. kvadrantu (Re > 0, Im < 0).

φ = arctg
(
−2

3

)
≈ −0, 588 rad

Pravou stranu tedy zapíšeme jako: 3− 2i =
√
13(cos(−0, 588) + i sin(−0, 588)).

Krok 3: Porovnání a výpočet
Porovnáním modulů a argumentů (při započtení periody 2kπ) získáme:

1. ex =
√
13 =⇒ x = ln(

√
13) = 1

2
ln(13) ≈ 1, 28.

2. y = −0, 588 + 2kπ pro k ∈ Z.

Výsledek:

z =
1

2
ln 13 + i(−0, 588 + 2kπ), k ∈ Z

Příklad 2. Goniometrická rovnice sin(z) = 6i Při řešení využijeme substituci na kvadra-
tickou rovnici.

Krok 1: Dosazení definice a úprava

eiz − e−iz

2i
= 6i =⇒ eiz − e−iz = 12i2 = −12

Zavedeme substituci w = eiz (tedy e−iz = 1/w):

w − 1

w
= −12 =⇒ w2 + 12w − 1 = 0

Krok 2: Výpočet kořenů w
Doplněním na čtverec: (w + 6)2 − 37 = 0 =⇒ w1,2 = −6±

√
37.

Krok 3: Návrat ze substituce (eiz = w)
Víme, že eiz = ei(x+iy) = e−y(cos x+ i sinx).

• Pro w1 =
√
37− 6: (Kladné číslo, úhel arg(w) = 0).

e−y =
√
37− 6 =⇒ y1 = − ln(

√
37− 6), x = 2kπ
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• Pro w2 = −6−
√
37: (Záporné číslo, úhel arg(w) = π).

e−y = 6 +
√
37 =⇒ y2 = − ln(6 +

√
37), x = π + 2kπ

Výsledek:

z1 = 2kπ − i ln(
√
37− 6)

z2 = (2k + 1)π − i ln(
√
37 + 6)

5 Metodické poznámky k výpočtům

• Určení kvadrantu: Při výpočtu arctg(y/x) je vždy nutné ověřit polohu bodu v
Gaussově rovině. Pro x < 0 přičítáme k výsledku z kalkulačky π.

• Logaritmování záporných čísel: V komplexním oboru se záporné číslo w inter-
pretuje jako |w| · eiπ. Proto se v řešení objevuje posun o π u imaginární části.

• Perioda: Nezapomínáme na 2kπ, protože komplexní exponenciála je periodická
funkce s periodou 2πi.

5.1 Význam pro studium

Díky této větě nemusíme při práci s sin z, cos z nebo ez neustále operovat s nekonečnými
řadami nebo Cauchyovými součiny. Pokud narazíme na výraz, o kterém víme, že v reálném
oboru funguje určitým způsobem, věta o jednoznačnosti nám dovoluje s ním v C pracovat
stejně, pokud jsou dané funkce holomorfní (což námi definované celistvé funkce jsou).
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