
Komplexní čísla, izomorfismy a algebraické
struktury

Učební text s řešenými úlohami a závěrečným testem

Úvod

Tento text provází sadou úloh zaměřených na algebraickou podstatu komplexních čísel. Ukážeme
si, jak lze komplexní čísla reprezentovat pomocí dvojic reálných čísel nebo matic a jak tyto
reprezentace souvisí s pojmy jako pole (těleso), izomorfismus a vektorový prostor.

1 Řešení základních úloh

Úloha 1: Existence inverzního prvku v (R2,⊕,⊗)

Zadání: Máme strukturu definovanou na R2 operacemi:

(x, y)⊕ (a, b) = (x+ a, y + b)

(x, y)⊗ (a, b) = (xa− yb, xb+ ya)

Naším úkolem je dokázat existenci inverzního prvku vzhledem k násobení, aniž bychom jej
přímo vypočítali.

Řešení: Aby byla struktura tělesem, musí ke každému nenulovému prvku (x, y) 6= (0, 0)
existovat inverzní prvek (u, v) takový, že jejich součin je roven neutrálnímu prvku násobení.
Neutrálním prvkem pro operaci⊗ je zjevně (1, 0), protože (x, y)⊗(1, 0) = (x·1−y·0, x·0+y·1) =
(x, y).

Hledáme tedy (u, v) tak, aby platilo:

(x, y)⊗ (u, v) = (1, 0)

Rozepsáním podle definice operace ⊗ získáme soustavu dvou lineárních rovnic o dvou ne-
známých u, v:

xu− yv = 1

yu+ xv = 0

Tuto soustavu můžeme zapsat maticově:(
x −y
y x

)(
u
v

)
=

(
1
0

)
Důkaz existence bez výpočtu: Z lineární algebry víme, že soustava lineárních rovnic má

právě jedno řešení, pokud je determinant matice soustavy nenulový.

D = det

(
x −y
y x

)
= x · x− (−y) · y = x2 + y2
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Jelikož předpokládáme, že prvek (x, y) je nenulový (tedy alespoň jedno z čísel x, y je různé
od nuly), musí platit x2 + y2 > 0. Determinant je tedy nenulový (D 6= 0). To dokazuje, že
řešení (u, v) existuje a je jednoznačné.

Úloha 2: Maticová reprezentace komplexních čísel

Zadání: Ukažte izomorfismus mezi (R2,⊕,⊗) a strukturou matic (M,+, ·), kde M = {
(
a −b
b a

)
:

a, b ∈ R}. Ověřte axiomy tělesa pro M .

1. Důkaz izomorfismu Definujme zobrazení f : R2 →M předpisem:

f((a, b)) =

(
a −b
b a

)
Pro izomorfismus musí platit zachování operací:

• Sčítání: f((x, y)⊕ (a, b)) = f((x+ a, y + b)) =

(
x+ a −(y + b)
y + b x+ a

)
.

Součet matic: f((x, y)) + f((a, b)) =

(
x −y
y x

)
+

(
a −b
b a

)
=

(
x+ a −y − b
y + b x+ a

)
.

Závěr: je splněno f((x, y)⊕ (a, b)) = f((x, y)) + f((a, b))

• Násobení: f((x, y)⊗ (a, b)) = f((xa− yb, xb+ ya)) =

(
xa− yb −(xb+ ya)
xb+ ya xa− yb

)
.

Součin matic: f((x, y)) · f((a, b)) =

(
x −y
y x

)
·
(
a −b
b a

)
=

(
xa− yb −xb− ya
ya+ xb −yb+ xa

)
.

Závěr: je splněno f((x, y)⊗ (a, b)) = f((x, y)) · f((a, b))

Zobrazení je bijekce, struktury jsou izomorfní.

2. Ověření axiomů tělesa pro (M,+, ·) M je podokruhem matic 2×2, takže asociativita
a distributivita jsou splněny. Zbývá ověřit:

1. Komutativita násobení: Matice tvaru
(
a −b
b a

)
spolu komutují. Můžeme se o tom

přesvědčit výpočtem součinů(
a −b
b a

)
·
(
x −y
y x

)
,

(
x −y
y x

)
·
(
a −b
b a

)

2. Jednotkový prvek: Matice I =

(
1 0
0 1

)
∈M .

3. Inverzní prvek: Pro A ∈M,A 6= 0 je det(A) = a2 + b2 > 0. Inverzní matice je:

A−1 =
1

a2 + b2

(
a b
−b a

)
což je opět prvek M .

Struktura (M,+, ·) je tělesem.
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Úloha 3: Lineární funkce a matice

Zadání: Ukažte izomorfismus mezi M1 = {z → az + b} (skládání) a M2 = {( a b0 1 )} (násobení).

Řešení: Přiřadíme f(z) = az + b↔ Af =

(
a b
0 1

)
.

• Skládání: pro f(z) = a1z + b1, g(z) = a2z + b2 je (f ◦ g)(z) = a1(a2z + b2) + b1 =
(a1a2)z + (a1b2 + b1).

• Násobení matic: (
a1 b1
0 1

)
·
(
a2 b2
0 1

)
=

(
a1a2 a1b2 + b1

0 1

)
Platí Af · Ag = Af◦g, zobrazení je tedy izomorfismus.

Úloha 4: Homomorfismus GL(2,C) a Möbiovy transformace

Zadání: Ukažte homomorfismus grupy M1 (regulární matice) do M2 (lineárně lomené funkce
f(z) = az+b

cz+d
).

Řešení: Definujme zobrazení Ψ : M1 →M2, které matici M přiřadí funkci fM

M =

(
a b
c d

)
, fM(z) =

az + b

cz + d

Mějme dvě obecné matice A,B ∈M1:

A =

(
a b
c d

)
, B =

(
α β
γ δ

)
1. Součin matic (levá strana rovnosti Ψ(A ·B)): Vypočítáme matici C = A ·B:

C =

(
a b
c d

)
·
(
α β
γ δ

)
=

(
aα + bγ aβ + bδ
cα + dγ cβ + dδ

)
Obrazem matice C v zobrazení Ψ je funkce:

Ψ(C)(z) =
(aα + bγ)z + (aβ + bδ)

(cα + dγ)z + (cβ + dδ)
(1)

2. Skládání funkcí (pravá strana rovnosti Ψ(A)◦Ψ(B)):Máme dvě funkce odpovídající
maticím A a B:

fA(z) =
az + b

cz + d
, fB(z) =

αz + β

γz + δ

Vypočítáme složené zobrazení (fA ◦ fB)(z) = fA(fB(z)):

(fA ◦ fB)(z) =
a
(
αz+β
γz+δ

)
+ b

c
(
αz+β
γz+δ

)
+ d

=
a(αz + β) + b(γz + δ)

c(αz + β) + d(γz + δ)

=
(aα + bγ)z + (aβ + bδ)

(cα + dγ)z + (cβ + dδ)

Výrazy jsou totožné, zobrazení je homomorfismem.
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Úloha 5: Jádro homomorfismu a faktorgrupa

1. Jádro (Ker Ψ) Hledáme matice, které se zobrazí na identitu id(z) = z.

az + b

cz + d
= z =⇒ az + b = cz2 + dz =⇒ cz2 + (d− a)z − b = 0

Aby rovnost platila pro všechna z, musí být c = 0, b = 0, a = d.

Ker Ψ =

{(
k 0
0 k

)
: k ∈ C \ {0}

}
= {k · I}

2. Faktorgrupa Podle 1. věty o izomorfismu:

GL(2,C)/{kI} ∼= PGL(2,C)

Faktorgrupou je projektivní obecná lineární grupa.

Úloha 6: Komplexní čísla jako vektorový prostor

Zadání: Ukažte, že C je vektorový prostor nad R, určete dimenzi a bázi.
Řešení:

(i) Každé z ∈ C lze psát jako z = x · 1 + y · i.

(ii) Prvky {1, i} jsou lineárně nezávislé nad R, protože x ·1+y · i = 0 právě když je x = y = 0.

(iii) Z (i), (ii) plyne, že {1, i} tvoří bázi vektorového prostoru.

(iv) Z (iii) plyne, že dimenze je d = 2.

(v) Zobrazení L(x + iy) = (x, y) je bijekce. Ukážeme, že L je lineární. Označme z = x + iy,
w = u+ iv. Upravíme L(z + w)

L(z + w) = L(x+ iy + u+ iv) = L(x+ u+ i(y + v)) = (x+ u, y + v) =

= (x, y) + (u, v) = L(x+ iy) + L(u+ iv)

= L(z) + L(w)

Pro α ∈ R upravíme

L(αz) = L(α(x+ iy)) = L(αx+ iαy) = (αx, αy) = α(x, y) =

= αL(z)

(vi) Z (v) plyne, že prostory C a R2 jsou izomorfní.
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2 Aplikace a hlubší souvislosti

V této části se podíváme na to, jak nám maticová reprezentace pomáhá pochopit geometrický
význam násobení komplexních čísel.

Úloha 7: Geometrický význam násobení imaginární jednotkou

Zadání: Uvažujme vektor ~v = (x, y) ∈ R2, který odpovídá komplexnímu číslu z = x+ iy.

1. Napište matici J , která v našem izomorfismu odpovídá imaginární jednotce i (tj. číslu
0 + 1i).

2. Vynásobte matici J vektorem ~v (chápaným jako sloupcový vektor).

3. Geometricky interpretujte výsledek.

Řešení: 1. Číslu 0 + 1i odpovídá matice J =

(
0 −1
1 0

)
.

2. Násobení:
J · ~v =

(
0 −1
1 0

)(
x
y

)
=

(
0 · x− 1 · y
1 · x+ 0 · y

)
=

(
−y
x

)
3. Výsledkem je vektor (−y, x). V Gaussově rovině to znamená, že původní vektor se otočil

o 90◦ (π
2
) v kladném směru (proti směru hodinových ručiček). Násobení číslem i je tedy

rotace o 90◦.

Úloha 8: Determinant a absolutní hodnota

Zadání: Dokažte pomocí determinantů větu o absolutní hodnotě součinu: |z1 · z2| = |z1| · |z2|.
Řešení: Absolutní hodnota (modul) čísla z = a+ bi je |z| =

√
a2 + b2. Determinant matice

A odpovídající číslu z je det(A) = a2 + b2. Platí tedy det(A) = |z|2.
Z Cauchyovy věty o determinantech víme, že det(A · B) = det(A) · det(B). Dosazením

získáme:
|z1z2|2 = |z1|2 · |z2|2

Odmocněním obou stran dostáváme požadované tvrzení |z1z2| = |z1| · |z2|.

Úloha 9: Mocnina jako rotace a stejnolehlost

Zadání: Mějme komplexní číslo z = 1+ i. Vypočítejte z4 pomocí maticového násobení a ověřte
geometricky.

Řešení: Číslu z = 1 + i odpovídá matice M =

(
1 −1
1 1

)
.

M2 =

(
1 −1
1 1

)(
1 −1
1 1

)
=

(
0 −2
2 0

)

M4 = M2 ·M2 =

(
0 −2
2 0

)(
0 −2
2 0

)
=

(
−4 0
0 −4

)
Výsledek odpovídá číslu −4. Geometricky: Číslo 1 + i má úhel 45◦. Jeho čtvrtá mocnina musí
mít úhel 4× 45◦ = 180◦, což odpovídá záporné reálné poloose. Modul (absolutní hodnota) čísla
1 + i je |1 + i| =

√
2, a tedy |1 + i|4 =

√
2
4

= 4 a to odpovídá | − 4|.

5



Učební text pro učitele Algebraické struktury a komplexní čísla

Úloha 10: Komplexně sdružené číslo a inverze

Zadání: Dokažte, že pro z na jednotkové kružnici (|z| = 1) platí z−1 = z̄.

Řešení: Nechť matice A =

(
a −b
b a

)
odpovídá číslu z. Podmínka |z| = 1 znamená det(A) =

a2 + b2 = 1. Inverzní matice je obecně A−1 = 1
det(A)

(
a b
−b a

)
. Protože det(A) = 1, je A−1 =(

a b
−b a

)
, což je transponovaná matice AT . Tato matice odpovídá číslu a− bi, tedy z̄.
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3 Shrnující závěr

V předchozích úlohách jsme zkoumali hlubší algebraickou podstatu komplexních čísel. Pro bu-
doucí učitele matematiky jsou klíčové následující závěry:

1. Komplexní čísla nejsou „imaginární“

Ukázali jsme, že těleso C je izomorfní s reálnými maticemi M ⊂ R2×2.

a+ bi ∼=
(
a −b
b a

)
Matice pro i je J = ( 0 −1

1 0 ), kde J2 = −I.

2. Spojitost mezi algebrou a geometrií

Násobení matic odpovídá skládání zobrazení. Grupa regulárních matic GL(2,C) se homomorfně
zobrazuje na grupu Möbiových transformací, což vede k projektivní geometrii.

4 Ověřovací test porozumění

1. Maticová reprezentace: Pokud komplexnímu číslu z = a+ bi odpovídá matice A, jaká
matice odpovídá z̄?

(a) AT (transponovaná)

(b) A−1 (inverzní)

(c) −A (opačná)

2. Struktura tělesa: Proč množina všech matic typu 2× 2 netvoří těleso?

(a) Sčítání není komutativní.

(b) Existují dělitele nuly.

(c) Nemají jednotkový prvek.

3. Homomorfismus: Na jakou funkci se zobrazí matice A =

(
2 0
0 2

)
v zobrazení Ψ?

(a) f(z) = 2z

(b) f(z) = 1

(c) f(z) = z (identita)

4. Geometrie: Co geometricky znamená vynásobení komplexního čísla z číslem i?

(a) Posunutí o 1.

(b) Otočení o 90◦.

(c) Zvětšení 2×.
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Řešení testu

1. (a) Matice pro z̄ je transponovaná. 2. (b) Obecné matice mají dělitele nuly. 3. (c) Matice
je skalární násobek identity, v projektivní grupě odpovídá identitě. 4. (b) Rotace o 90◦.
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