Kontakt
G, 4. patro, místnost 4075
Tel: +420 48 535 2906
E-mail:
Konzultační hodiny
St: 12:00-13:00
Ostatní
-
Výuka
Výuka pro Fakultu přírodovědně-humanitní a pedagogickou
Výuka pro Fakultu mechatroniky, informatiky a mezioborových studií
-
Publikace
Článek v periodiku uvedený v databázi Web of Science- ČERNÁ, D. a FINĚK, V., 2020. Galerkin method with new quadratic spline wavelets for integral and integro-differential equations. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. 363(JAN 2020), 426-443. ISSN 0377-0427.
- ČERNÁ, D. a FINĚK, V., 2018. Quadratic Spline Wavelets with Short Support Satisfying Homogeneous Boundary Conditions. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS. 48(neuvedeno), 15-39. ISSN 1068-9613.
- FINĚK, V. a ČERNÁ, D., 2017. A diagonal preconditioner for singularly perturbed problems. Boundary Value Problems. 48(neuvedeno), ISSN 1687-2770.
- ČERNÁ, D. a FINĚK, V., 2017. Sparse Wavelet Representation of Differential Operators with Piecewise Polynomial Coefficients. Axioms. 6(1), ISSN 2075-1680.
- FINĚK, V. a ČERNÁ, D., 2016. On a Sparse Representation of an n-Dimensional Laplacian in Wavelet Coordinates. Results in Mathematics. 69(1-2), 225-243. ISSN 1422-6383.
- ČERNÁ, D. a FINĚK, V., 2015. Wavelet basis of cubic splines on the hypercube satisfying homogeneous boundary conditions. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING. 13(3), ISSN 0219-6913.
- ČERNÁ, D. a FINĚK, V., 2014. Cubic spline wavelets with short support for fourth-order problems. Applied Mathematics and Computation. 243(September), 44-56. ISSN 0096-3003.
- ČERNÁ, D. a FINĚK, V., 2014. Quadratic Spline Wavelets with Short Support for Fourth-Order Problems. Results in Mathematics. 66(3-4), 525-540. ISSN 1422-6383.
- FINĚK, V. a ČERNÁ, D., 2013. Approximate multiplication in adaptive wavelet methods. Central European Journal of Mathematics. 11(5), 972-983. ISSN 1895-1074.
- ČERNÁ, D. a FINĚK, V., 2012. Cubic spline wavelets with complementary boundary conditions. Applied Mathematics and Computation. 219(4), 1853-1865. ISSN 0096-3003.
- ČERNÁ, D. a FINĚK, V., 2011. Construction of optimally conditioned cubic spline wavelets on the interval. Advances in Computational mathematics. 34(2), 219-252. ISSN 1019-7168.
- FINĚK, V., ČERNÁ, D. a NAJZAR, K., 2008. On the exact values of coefficients of coiflets. Central European Journal of Mathematics. 6(1), ISSN 1895-1074.
- FINĚK, V. a ČERNÁ, D., 2004. On the computation of scaling coefficients of Daubechies‘ wavelets. Central European Journal of Mathematics. 2(3), 399-419. ISSN 1895-1074.
Kapitola v odborné recenzované knize- ČERNÁ, D. a FINĚK, V., 2021. Wavelet-Galerkin Method for Second-Order Integro-Differential Equations on Product Domains. 1. vyd. Switzerland: Springer International Publishing. ISBN 978-3-030-65508-2.
Příspěvek ve sborníku uvedený v databázi Scopus nebo Web of Science- FINĚK, V., 2019. Adaptive wavelet based scheme for option pricing. ISBN 978-1-5386-7500-7.
- FINĚK, V., 2018. Adaptive Scheme for Black-Scholes Equation using Hermite Cubic Spline Wavelets. ISBN 978-0-7354-1774-8.
- FINĚK, V., 2018. Convergence of Crank-Nicolson scheme combined with wavelet discretization for the Black-Scholes equation. NEW YORK: IEEE. ISBN 978-1-5386-2820-1.
- FINĚK, V., 2018. Implicit-explicit scheme combined with wavelets for pricing European options. Hradec Kralove, CZECH REPUBLIC: UNIV HRADEC KRALOVE. ISBN 978-80-7435-678-0.
- ČERNÁ, D. a FINĚK, V., 2018. Valuation of Options under Heston Stochastic Volatility Model Using Wavelets. NEW YORK, USA: IEEE. ISBN 978-1-5386-2820-1.
- FINĚK, V., 2017. Fourth Order Scheme for Wavelet Based Solution of Black-Scholes Equation. MELVILLE, NY 11747-4501 USA: AMER INST PHYSICS. ISBN 9780735416024.
- FINĚK, V., 2017. Fractional Step Method for Wavelet Based Solution of Black-Scholes Equation. MELVILLE, NY 11747-4501 USA: AMER INST PHYSICS. ISBN 9780735414532.
- FINĚK, V., 2017. Properties of Wavelet Discretization of Black-Scholes Equation. MELVILLE, NY 11747-4501 USA: AMER INST PHYSICS. ISBN 9780735415386.
- ČERNÁ, D. a FINĚK, V., 2016. Adaptive wavelet method for the Black-Scholes equation of European options. Liberec: TECHNICAL UNIVERSITY LIBEREC, STUDENTSKA 2, LIBEREC, 00000, CZECH REPUBLIC. ISBN 978-80-7494-296-9.
- ČERNÁ, D., FINĚK, V. a ŠIMŮNKOVÁ, M., 2016. Quantitative Properties of Quadratic Spline Wavelets in Higher Dimensions. Prague: Institute of Mathematics AS CR. ISBN 978-80-85823-64-6.
- FINĚK, V., ČERNÁ, D. a CVEJNOVÁ, D., 2016. Wavelets based on Hermite cubic splines. MELVILLE, NY 11747-4501 USA: AMER INST PHYSICS. ISBN 978-0-7354-1392-4.
-
Úspěšně obhájené vedené závěrečné práce
- Cvejnová Daniela | diplomová práce | 30.4.2015
Wavelet methods for numerical solution of partial differential equations - Cvejnová Daniela | bakalářská práce | 28.6.2013
Wavelets
- Cvejnová Daniela | diplomová práce | 30.4.2015
-
Výuka
Akademický rok: 2024/2025Zimní semestrPondělí- KMA/MA1-M (G-G301)
Matematika 1 | 08:50 - 10:25 - KMA/MA1-M (-)
Matematika 1 | 10:40 - 12:15 - KMA/MVS2 (-)
Metodika výuky šachu 2 | 16:10 - 17:45
Středa- KMA/MA1-M (G-G314)
Matematika 1 | 10:40 - 12:15 - KMA/MA1-M (G-G314)
Matematika 1 | 16:10 - 17:45
Letní semestrPondělí- KMA/MVS1 (G-G4-MAT)
Metodika výuky šachu 1 | 16:10 - 17:45 - KMA/MVS1 (G-G4-MAT)
Metodika výuky šachu 1 | 16:10 - 17:45
Středa- KMA/MA2-M (G-G312)
Matematika 2 | 10:40 - 13:15 - KMA/DR (G-G301)
Diferenciální rovnice | 14:20 - 15:55 - KMA/DR (G-G301)
Diferenciální rovnice | 14:20 - 15:55
- KMA/MA1-M (G-G301)